login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137214
a(n) is the number of distinct decimal digits in 2^n.
6
1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 3, 5, 4, 4, 7, 6, 5, 4, 4, 4, 6, 6, 6, 9, 7, 7, 5, 6, 6, 7, 7, 8, 7, 7, 7, 6, 8, 7, 9, 8, 7, 8, 9, 7, 8, 9, 8, 7, 7, 8, 8, 7, 9, 8, 9, 9, 9, 9, 9, 9, 8, 9, 10, 9, 10, 7, 9, 8, 9, 9, 9, 8, 9, 10, 9, 9, 10, 9, 10, 9, 9, 10, 10, 10, 9, 8, 9, 9, 10, 10, 10, 10, 10
OFFSET
0,5
COMMENTS
Appears to be all 10's starting at a(169). - T. D. Noe, Apr 01 2014
FORMULA
a(n) = A043537(2^n). - R. J. Mathar, Mar 16 2008
EXAMPLE
a(16) = 3 because 2^16 = 65536, which contains 3 distinct decimal digits [3,5,6].
MAPLE
A043537 := proc(n) nops(convert(convert(n, base, 10), set)) ; end: A137214 := proc(n) A043537(2^n) ; end: seq(A137214(n), n=0..120) ; # R. J. Mathar, Mar 16 2008
a:=proc(n) options operator, arrow: nops(convert(convert(2^n, base, 10), set)) end proc: seq(a(n), n=0..80); # Emeric Deutsch, Apr 02 2008
MATHEMATICA
Table[Length[Union[IntegerDigits[2^n]]], {n, 0, 100}] (* T. D. Noe, Apr 01 2014 *)
PROG
(Python)
def a(n): return len(set(str(2**n)))
print([a(n) for n in range(99)]) # Michael S. Branicky, Jul 23 2021
CROSSREFS
Sequence in context: A046155 A026819 A302342 * A284726 A319951 A222642
KEYWORD
easy,nonn,base
AUTHOR
Ctibor O. Zizka, Mar 06 2008
EXTENSIONS
More terms from R. J. Mathar and Emeric Deutsch, Mar 16 2008
STATUS
approved