login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027086
a(n) = A027082(n, n+4).
1
11, 41, 108, 246, 517, 1035, 2010, 3828, 7199, 13429, 24920, 46090, 85065, 156791, 288758, 531528, 978099, 1799521, 3310404, 6089406, 11200845, 20602307, 37894354, 69699452, 128198215, 235794285, 433694384, 797689490, 1467180945, 2698567791, 4963441390
OFFSET
4,1
FORMULA
a(n) = A027026(n) + (n+1)(n+2)/2 - 3.
From Colin Barker, Feb 20 2016: (Start)
a(n) = 4*a(n-1)-5*a(n-2)+2*a(n-3)-a(n-4)+2*a(n-5)-a(n-6) for n>9.
G.f.: x^4*(11-3*x-x^2-3*x^3+2*x^4) / ((1-x)^3*(1-x-x^2-x^3)).
(End)
a(n) = A000213(n+4) -4 -3*n*(n+3)/2. - R. J. Mathar, Jun 24 2020
MATHEMATICA
LinearRecurrence[{4, -5, 2, -1, 2, -1}, {11, 41, 108, 246, 517, 1035}, 35] (* Vincenzo Librandi, Feb 20 2016 *)
PROG
(PARI) Vec(x^4*(11-3*x-x^2-3*x^3+2*x^4)/((1-x)^3*(1-x-x^2-x^3)) + O(x^40)) \\ Colin Barker, Feb 20 2016
(Magma) I:=[11, 41, 108, 246, 517, 1035]; [n le 6 select I[n] else 4*Self(n-1)-5*Self(n-2)+2*Self(n-3)-Self(n-4)+2*Self(n-5)-Self(n-6): n in [1..40]]; // Vincenzo Librandi, Feb 20 2016
CROSSREFS
Sequence in context: A066595 A260266 A195117 * A075985 A356125 A334545
KEYWORD
nonn,easy
STATUS
approved