OFFSET
2,2
COMMENTS
Lengths of palindromic prefixes of the ternary tribonacci word A080843 [A. Glen]. - N. J. A. Sloane, Jun 09 2019
Original definition was: a(n) = (1/2)*T(n,n+2), T given by A027082.
LINKS
Hamoon Mousavi, Jeffrey Shallit, Mechanical Proofs of Properties of the Tribonacci Word, arXiv:1407.5841 [cs.FL], 2014.
Bo Tan and Zhi-Ying Wen, Some properties of the Tribonacci sequence, European Journal of Combinatorics, 28 (2007) 1703-1719. See Prop. 2.9, |D_n|.
Index entries for linear recurrences with constant coefficients, signature (2, 0, 0, -1).
FORMULA
Positive numbers of the form (t_n + t_{n+2} - 3)/2, n>1, where {t_n} are the tribonacci numbers A000073 [A. Glen]. See Mousavi-Shallit, 2014. - N. J. A. Sloane, Jun 09 2019
2*a(n) = A000213(n+2)-3. - R. J. Mathar, Jun 24 2020
PROG
(PARI) Vec(x^2*(x^2 + x + 1)/(x^4 - 2*x + 1) + O(x^50)) \\ Michel Marcus, Dec 29 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Entry revised by N. J. A. Sloane, Aug 05 2018
STATUS
approved