Journal of Advances in Modeling Earth Systems, 2015
Climate change will have potentially significant effects on freshwater quality due to increases i... more Climate change will have potentially significant effects on freshwater quality due to increases in river and lake temperatures, changes in the magnitude and seasonality of river runoff, and more frequent and severe extreme events. These physical impacts will in turn have economic consequences through effects on riparian development, river and reservoir recreation, water treatment, harmful aquatic blooms, and a range of other sectors. In this paper, we analyze the physical and economic effects of changes in freshwater quality across the contiguous U.S. in futures with and without global-scale greenhouse gas mitigation. Using a water allocation and quality model of 2119 river basins, we estimate the impacts of various projected emissions outcomes on several key water quality indicators, and monetize these impacts with a water quality index approach. Under mitigation, we find that water temperatures decrease considerably and that dissolved oxygen levels rise in response. We find that the annual economic impacts on water quality of a high emissions scenario rise from $1.4 billion in 2050 to $4 billion in 2100, leading to present value mitigation benefits, discounted at 3%, of approximately $17.5 billion over the 2015-2100 period.
The sustainability of future water resources is of paramount importance and is affected by many f... more The sustainability of future water resources is of paramount importance and is affected by many factors, including population, wealth and climate. Inherent in how these factors change in the future is the uncertainty of their prediction. In this study, we integrate a large ensemble of scenarios—internally consistent across economics, emissions, climate, and population—to develop a risk portfolio of water stress over a large portion of Asia that includes China, India, and Mainland Southeast Asia. We isolate the effects of socioeconomic growth from the effects of climate change in order to identify the primary drivers of stress on water resources. We find that water needs related to socioeconomic changes, which are currently small, are likely to increase considerably in the future, often overshadowing the effect of climate change on levels of water stress. As a result, there is a high risk of severe water stress in densely populated watersheds by 2050, compared to recent history. If s...
Through the integration of a Water Resource System (WRS) component, the MIT Integrated Global Sys... more Through the integration of a Water Resource System (WRS) component, the MIT Integrated Global System Model (IGSM) framework has been enhanced to study the effects of climate change on managed water-resource systems. Development of the WRS involves the downscaling of temperature and precipitation from the zonal representation of the IGSM to regional (latitude-longitude) scale, and the translation of the resulting surface hydrology to runoff at the scale of river basins, referred to as Assessment Sub-Regions (ASRs). The model of water supply is combined with analysis of water use in agricultural and non-agricultural sectors and with a model of water system management that allocates water among uses and over time and routes water among ASRs. Results of the IGSM-WRS framework include measures of water adequacy and ways it is influenced by climate change. Here we document the design of WRS and its linkage to other components of the IGSM, and present tests of consistency of model simulati...
The MIT Joint Program on the Science and Policy of Global Change is an organization for research,... more The MIT Joint Program on the Science and Policy of Global Change is an organization for research, independent policy analysis, and public education in global environmental change. It seeks to provide leadership in understanding scientific, economic, and ecological aspects of this difficult issue, and combining them into policy assessments that serve the needs of ongoing national and international discussions. To this end, the Program brings together an interdisciplinary group from two established research centers at MIT: the Center for Global Change Science (CGCS) and the Center for Energy and Environmental Policy Research (CEEPR). These two centers bridge many key areas of the needed intellectual work, and additional essential areas are covered by other MIT departments, by collaboration with the Ecosystems Center of the Marine Biology Laboratory (MBL) at Woods Hole, and by short-and long-term visitors to the Program. The Program involves sponsorship and active participation by indu...
Mozambique, like many African countries, is already highly susceptible to climate variability and... more Mozambique, like many African countries, is already highly susceptible to climate variability and extreme weather events. Climate change threatens to heighten this vulnerability. In order to evaluate potential impacts and adaptation options for Mozambique, we develop an integrated modelling framework that translates atmospheric changes from general circulation model projections into biophysical outcomes via detailed hydrologic, crop, hydropower and infrastructure models. These sector models simulate a historical baseline and four extreme climate change scenarios. Sector results are then passed down to a dynamic computable general equilibrium model, which is …/ -50. Our analysis identifies improved road design and agricultural sector investments as key 'no-regret' adaptation measures, alongside intensified efforts to develop a more flexible and resilient society. Our findings also support the need for cooperative river basin management and the regional coordination of adaptation strategies.
Ethiopia is climatically and environmentally extremely heterogeneous. The highlands receive a lot... more Ethiopia is climatically and environmentally extremely heterogeneous. The highlands receive a lot of rainfall (more than 2000 mm/year) concentrated in only three months. Most of Ethiopian runoff is produced in these highlands (part of this water reaches the Mediterranean sea through the Nile river). Lowlands vary from forests to deserts. The hottest place on earth is there (the Danakil depression, more than 150 meters below see level). This makes the spatial and temporal variability of hydrologic signatures very strong ...
Journal of Advances in Modeling Earth Systems, 2015
Climate change will have potentially significant effects on freshwater quality due to increases i... more Climate change will have potentially significant effects on freshwater quality due to increases in river and lake temperatures, changes in the magnitude and seasonality of river runoff, and more frequent and severe extreme events. These physical impacts will in turn have economic consequences through effects on riparian development, river and reservoir recreation, water treatment, harmful aquatic blooms, and a range of other sectors. In this paper, we analyze the physical and economic effects of changes in freshwater quality across the contiguous U.S. in futures with and without global-scale greenhouse gas mitigation. Using a water allocation and quality model of 2119 river basins, we estimate the impacts of various projected emissions outcomes on several key water quality indicators, and monetize these impacts with a water quality index approach. Under mitigation, we find that water temperatures decrease considerably and that dissolved oxygen levels rise in response. We find that the annual economic impacts on water quality of a high emissions scenario rise from $1.4 billion in 2050 to $4 billion in 2100, leading to present value mitigation benefits, discounted at 3%, of approximately $17.5 billion over the 2015-2100 period.
The sustainability of future water resources is of paramount importance and is affected by many f... more The sustainability of future water resources is of paramount importance and is affected by many factors, including population, wealth and climate. Inherent in how these factors change in the future is the uncertainty of their prediction. In this study, we integrate a large ensemble of scenarios—internally consistent across economics, emissions, climate, and population—to develop a risk portfolio of water stress over a large portion of Asia that includes China, India, and Mainland Southeast Asia. We isolate the effects of socioeconomic growth from the effects of climate change in order to identify the primary drivers of stress on water resources. We find that water needs related to socioeconomic changes, which are currently small, are likely to increase considerably in the future, often overshadowing the effect of climate change on levels of water stress. As a result, there is a high risk of severe water stress in densely populated watersheds by 2050, compared to recent history. If s...
Through the integration of a Water Resource System (WRS) component, the MIT Integrated Global Sys... more Through the integration of a Water Resource System (WRS) component, the MIT Integrated Global System Model (IGSM) framework has been enhanced to study the effects of climate change on managed water-resource systems. Development of the WRS involves the downscaling of temperature and precipitation from the zonal representation of the IGSM to regional (latitude-longitude) scale, and the translation of the resulting surface hydrology to runoff at the scale of river basins, referred to as Assessment Sub-Regions (ASRs). The model of water supply is combined with analysis of water use in agricultural and non-agricultural sectors and with a model of water system management that allocates water among uses and over time and routes water among ASRs. Results of the IGSM-WRS framework include measures of water adequacy and ways it is influenced by climate change. Here we document the design of WRS and its linkage to other components of the IGSM, and present tests of consistency of model simulati...
The MIT Joint Program on the Science and Policy of Global Change is an organization for research,... more The MIT Joint Program on the Science and Policy of Global Change is an organization for research, independent policy analysis, and public education in global environmental change. It seeks to provide leadership in understanding scientific, economic, and ecological aspects of this difficult issue, and combining them into policy assessments that serve the needs of ongoing national and international discussions. To this end, the Program brings together an interdisciplinary group from two established research centers at MIT: the Center for Global Change Science (CGCS) and the Center for Energy and Environmental Policy Research (CEEPR). These two centers bridge many key areas of the needed intellectual work, and additional essential areas are covered by other MIT departments, by collaboration with the Ecosystems Center of the Marine Biology Laboratory (MBL) at Woods Hole, and by short-and long-term visitors to the Program. The Program involves sponsorship and active participation by indu...
Mozambique, like many African countries, is already highly susceptible to climate variability and... more Mozambique, like many African countries, is already highly susceptible to climate variability and extreme weather events. Climate change threatens to heighten this vulnerability. In order to evaluate potential impacts and adaptation options for Mozambique, we develop an integrated modelling framework that translates atmospheric changes from general circulation model projections into biophysical outcomes via detailed hydrologic, crop, hydropower and infrastructure models. These sector models simulate a historical baseline and four extreme climate change scenarios. Sector results are then passed down to a dynamic computable general equilibrium model, which is …/ -50. Our analysis identifies improved road design and agricultural sector investments as key 'no-regret' adaptation measures, alongside intensified efforts to develop a more flexible and resilient society. Our findings also support the need for cooperative river basin management and the regional coordination of adaptation strategies.
Ethiopia is climatically and environmentally extremely heterogeneous. The highlands receive a lot... more Ethiopia is climatically and environmentally extremely heterogeneous. The highlands receive a lot of rainfall (more than 2000 mm/year) concentrated in only three months. Most of Ethiopian runoff is produced in these highlands (part of this water reaches the Mediterranean sea through the Nile river). Lowlands vary from forests to deserts. The hottest place on earth is there (the Danakil depression, more than 150 meters below see level). This makes the spatial and temporal variability of hydrologic signatures very strong ...
Uploads
Papers by Charles Fant