1
vote
Accepted
Finiteness of hitting 1 for asymmetric random walk using martingales - uniform integrability
When $0<p<1/2$ and $t>0$, $0<\phi_X(t)<1$ for small positive $t$. For such $t$, your argument runs into a problem because $\phi_X(t)^{-T}=+\infty$ on the event $\{T=\infty\}$.
But ...
1
vote
Showing $\limsup \frac{\mid X_n \mid}{\sqrt{n}} < K$ a.s if it is finite a.s. and $(X_n)_n$ are iidrv
Let $Y=\limsup \frac{\mid X_n \mid}{\sqrt{n}}$. Then $0 \le Y <\infty$ with probability $1$. But $P(Y<K) \to 1$ as $ K \to \infty$ [which is true for any real valued random variable $Y$].
If $P(...
Only top scored, non community-wiki answers of a minimum length are eligible
Related Tags
probability-limit-theorems × 1605probability-theory × 1046
probability × 632
probability-distributions × 336
central-limit-theorem × 197
convergence-divergence × 177
statistics × 146
measure-theory × 138
law-of-large-numbers × 129
limits × 110
random-variables × 110
weak-convergence × 106
stochastic-processes × 77
real-analysis × 58
normal-distribution × 56
asymptotics × 42
sequences-and-series × 40
martingales × 33
expected-value × 29
calculus × 27
borel-cantelli-lemmas × 27
brownian-motion × 25
random-walk × 25
solution-verification × 24
independence × 20