Skip to main content

All Questions

Tagged with
Filter by
Sorted by
Tagged with
1 vote
2 answers
141 views

How can I solve this maximization problem with inequality constraint on the Frobenius norm?

$$ \max_{C\in \mathbb{S}^n} x^TCx\\ s.t. \|C\|_{tr}^2\leq b $$ where $\|C\|_{tr}^2=tr(C^TC)=tr(CC)$, $C$ is a symmetric matrix.
Liangyu Min's user avatar
0 votes
4 answers
196 views

Maximize $\langle \mathrm A , \mathrm X \rangle$ subject to $\| \mathrm X \|_F = 1$

Given $\mathrm A \in \mathbb R^{m \times n}$, $$\begin{array}{ll} \text{maximize} & \langle \mathrm A , \mathrm X \rangle\\ \text{subject to} & \| \mathrm X \|_F = 1\end{array}$$ I can think ...
Rodrigo de Azevedo's user avatar