Skip to main content

All Questions

Filter by
Sorted by
Tagged with
4 votes
1 answer
157 views

Simpler proof of identity $ \sum_{n=1}^{\infty} \frac{H_n^2}{n2^n} = \frac{7}{8} \zeta(3) $

The identity in question can be obtained by first proving $$ \sum_{n=1}^{\infty} \frac{H_n^2}{n} z^n = - \frac{1}{3} \log^3(1-z) -\log(1-z) \text{Li}_2(z) + \text{Li}_3(z), \hspace{0.5cm} |z|<1, $$ ...
Dave's user avatar
  • 1,773
17 votes
3 answers
671 views

Evaluating $\int_0^{\frac{\pi}{2}}x^2 \cot x\ln(1-\sin x)\mathrm{d}x$

I was able to find $$\int_0^{\frac{\pi}{2}}x^2 \cot x\ln(1-\sin x)\mathrm{d}x=-\frac14\sum_{n=1}^\infty\frac{4^n}{{2n\choose n}}\frac{H_{2n}}{n^3}$$ $$=5\operatorname{Li}_4\left(\frac12\right)-\frac{...
Ali Shadhar's user avatar
  • 26.6k
4 votes
1 answer
341 views

Closed form for $\sum_{k=1}^\infty\frac{H_k^{(m)}}{k^n}$

Let's define $$\sigma(m,n)=\sum_{k=1}^\infty\frac{H_k^{(m)}}{k^n}$$ where $H_k^{(m)}=\sum_{n=1}^{k}\frac{1}{n^m}$ is the k-th generalized harmonic number of order $m$. In mathworld site Eq (20), I ...
Ali Shadhar's user avatar
  • 26.6k
7 votes
0 answers
114 views

Convergence of double integral involving logarithms and binomials? Can anyone present a simpler proof?

I am working through a paper I posted to arXiv and am looking to condense my results as well as seek alternative proofs for some of my intermediate results. In particular, I am looking for a shorter ...
Aaron Hendrickson's user avatar
9 votes
1 answer
334 views

Different ways to evaluate $\sum_{n=1}^\infty\frac{H_nH_n^{(2)}}{(n+1)(n+2)(n+3)}$

The following question: How to compute the harmonic series $$\sum_{n=1}^\infty\frac{H_nH_n^{(2)}}{(n+1)(n+2)(n+3)}$$ where $H_n=\sum_{k=1}^n\frac{1}{k}$ and $H_n^{(2)}=\sum_{k=1}^n\frac{1}{k^2}$, was ...
Ali Shadhar's user avatar
  • 26.6k
6 votes
1 answer
337 views

Trying to prove $\left(1-\frac13+\frac15-\frac17+\cdots\right)^2=\frac38\left(\frac1{1^2}+\frac1{2^2}+\frac1{3^2}+\frac1{4^2}+\cdots\right)$

It has been more than 7 days I have been trying to prove this following result using Harmonic Numbers Let me add this Proving $\left(1-\frac13+\frac15-\frac17+\cdots\right)^2=\frac38\left(\frac1{1^2}+\...
Darshan P.'s user avatar
  • 1,201
4 votes
1 answer
372 views

Prove $\displaystyle\sum_{-\infty}^0\text H(x)=\frac12\sum_0^\infty\frac{\text H_\frac x2-\text H_\frac{x-1}2}{x!}=\frac{\text{Ei}(2)-\text{Ei}(1)}e$

The Hadamard Gamma function generalizes the factorial function to have no poles as a result of the reciprocal gamma function in its definition. It also is monotonic on $[-\infty,0]$ and $[2,\infty]$ ...
Тyma Gaidash's user avatar
9 votes
4 answers
348 views

Alternative ways to evaluate $\int_0^1 x^{2n-1}\ln(1+x)dx =\frac{H_{2n}-H_n}{2n}$

For all, $n\geq 1$, prove that $$\int_0^1 x^{2n-1}\ln(1+x)\,dx =\frac{H_{2n}-H_n}{2n}\tag1$$ This identity I came across to know from here, YouTube which is proved in elementary way. Trying to make ...
Naren's user avatar
  • 3,482
4 votes
2 answers
349 views

How to approach $\sum_{n=0}^\infty(-1)^n\frac{H_{2n+1}}{(2n+1)^3}$ elegantly?

How to show that $$\sum_{n=0}^\infty(-1)^n\frac{H_{2n+1}}{(2n+1)^3}=\frac{\psi^{(3)}\left(\frac14\right)}{384}-\frac{\pi^4}{48}-\frac{35\pi}{128}\zeta(3)$$ without using the generating function: \...
Ali Shadhar's user avatar
  • 26.6k
3 votes
0 answers
95 views

Identity for $\gamma$ and proving the identity in different ways .

Following is the well know result that connects Harmonic number with binomial coefficients, $$\color{red}{H_n}=\sum_{k=1}^{\infty}\frac{(-1)^{k+1}}{k}{n\choose k}$$ This motivates me and I came to ...
Naren's user avatar
  • 3,482
6 votes
2 answers
386 views

Computing $\sum_{n=1}^\infty\frac{(-1)^nH_n^2}{2n+1}$ in an alternative way

The following equality $$\sum_{n=1}^\infty(-1)^{n-1}\frac{H_n^2}{2n+1}=\frac{3}{16}\pi^3-\frac34\ln^2(2)\pi-8\Im\left\{\text{Li}_3\left(\frac{1+i}{2}\right)\right\}$$ can be proved if we are allowed ...
Ali Shadhar's user avatar
  • 26.6k
3 votes
3 answers
216 views

Alternative proof of computing $\sum _{n=1}^{\infty } \frac{4^n H_n}{n^2 {2n\choose n}}$

In this solution we showed that $$\sum _{n=1}^{\infty } \frac{4^n H_n}{n^2 {2n\choose n}}=6\ln(2)\zeta(2)+\frac72\zeta(3)\tag1$$ using the identity $$\frac{\arcsin x}{\sqrt{1-x^2}}=\sum_{n=1}^\infty\...
Ali Shadhar's user avatar
  • 26.6k
8 votes
3 answers
243 views

Evalute triple sum $ \sum_{m\geq 0}\sum_{n \geq 0}\sum_{p\geq 0} \frac{m!n!p!}{(m+n+p+2)!}$

I had a triple $T$ sum to evaluate $$\sum_{m\geq 0}\sum_{n \geq 0}\sum_{p\geq 0} \frac{m!n!p!}{(m+n+p+2)!}$$ where $!$ denotes factorials. The managed to find the closed form of it, $\displaystyle \...
Naren's user avatar
  • 3,482
4 votes
0 answers
82 views

How to show $\sum_{k=1}^\infty\sum_{n=1}^\infty\frac{H_{n-1}}{n^2(n+k)^2}=\sum_{n=1}^\infty\frac{H_{n-1}^{(2)}}{n^3}$ using series manipulation?

Using integration, I managed to show that $$\sum_{k=1}^\infty\sum_{n=1}^\infty\frac{H_{n-1}}{n^2(n+k)^2}=\sum_{n=1}^\infty\frac{H_{n-1}^{(2)}}{n^3}\tag1$$ But I would like to prove the equality using ...
Ali Shadhar's user avatar
  • 26.6k
1 vote
0 answers
147 views

Different approach to compute $\int_0^1\frac{\ln(x)}{1+x}\text{Li}_2\left(\frac{1+x}2\right)\ dx$

The following integral $$I=\int_0^1\frac{\ln(x)}{1+x}\text{Li}_2\left(\frac{1+x}2\right)\ dx$$ was already evaluated by @Knas here where he found $$I=-2\operatorname{Li}_4\left(\dfrac{1}{2}\right)-\...
Ali Shadhar's user avatar
  • 26.6k
2 votes
4 answers
278 views

Compute $\int_0^1\frac{\ln(1-x)\ln(1+x)}{1+x}\ln\left(\frac{1+x}{2}\right)\ dx$

How to prove that $$\int_0^1\frac{\ln(1-x)\ln(1+x)}{1+x}\ln\left(\frac{1+x}{2}\right)\ dx$$ $$=2\text{Li}_4\left(\frac12\right)-2\zeta(4)+\frac{15}8\ln(2)\zeta(3)-\frac12\ln^2(2)\zeta(2)$$ where $\...
Ali Shadhar's user avatar
  • 26.6k
3 votes
0 answers
201 views

Evaluating $\int_0^1\frac{\ln x\operatorname{Li}_2(x)\ln(1-x/2)}{x}\ dx$

How to evaluate $$\int_0^1\frac{\ln x\operatorname{Li}_2(x)\ln(1-\frac{x}{2})}{x}\ dx\ ?$$ I came across this integral while I was trying to calculate $\int_0^{1/2}\frac{\operatorname{Li}_2^2(x)}{...
Ali Shadhar's user avatar
  • 26.6k
5 votes
0 answers
151 views

Computing $\sum_{n=1}^\infty\frac{(-1)^{n-1}H_n^{(2)}}{(2n+1)^4}$

I managed to find $$S=\sum_{n=1}^\infty\frac{(-1)^{n-1}H_n^{(2)}}{(2n+1)^4}=20\beta(6)+\frac12\zeta(2)\beta(4)-\frac{7\pi^3}{32}\zeta(3)-\frac{31\pi}{8}\zeta(5)$$ where $\beta(a)$ is the ...
Ali Shadhar's user avatar
  • 26.6k
2 votes
2 answers
182 views

Computing $\sum_{n=1}^\infty(-1)^n\frac{\overline{H}_nH_n}{n^2}$

How to elegantly prove that $$S=\sum_{n=1}^\infty(-1)^n\frac{\overline{H}_nH_n}{n^2}=3\operatorname{Li}_4\left(\frac12\right)-\frac{29}{16}\zeta(4)-\frac34\ln^22\zeta(2)+\frac18\ln^42$$ where $\...
Ali Shadhar's user avatar
  • 26.6k
10 votes
2 answers
453 views

Prove $\sum_{n=0}^\infty(-1)^n(\overline{H}_n-\ln2)^3=-\frac5{16}\zeta(3)$

How to prove that $$S=\sum_{n=0}^\infty(-1)^n(\overline{H}_n-\ln2)^3=-\frac5{16}\zeta(3)$$ where $\overline{H}_n=\sum_{k=1}^n\frac{(-1)^{k-1}}{k}$ is the alternating harmonic number. I came up ...
Ali Shadhar's user avatar
  • 26.6k
4 votes
2 answers
358 views

Prove $\sum_{n=0}^\infty(-1)^n(\overline{H}_n-\ln2)^2=\frac{\pi^2}{24}$

how to prove that $$\sum_{n=0}^\infty(-1)^n(\overline{H}_n-\ln2)^2=\frac{\pi^2}{24}\ ?$$ where $\overline{H}_n=\sum_{k=1}^n\frac{(-1)^{k-1}}{k}$ is the alternating harmonic number. This problem ...
Ali Shadhar's user avatar
  • 26.6k
2 votes
2 answers
566 views

Compute $\int_0^1\frac{\ln^2(1+x)\operatorname{Li}_2(-x)}{x}dx$

How to prove $$\int_0^1\frac{\ln^2(1+x)\operatorname{Li}_2(-x)}{x}dx=4\operatorname{Li}_5\left(\frac12\right)+4\ln2\operatorname{Li}_4\left(\frac12\right)-\frac{125}{32}\zeta(5)-\frac{1}{8}\zeta(2)...
Ali Shadhar's user avatar
  • 26.6k
14 votes
2 answers
511 views

An attempt to prove the generalization of $\sum_{n=1}^\infty \frac{(-1)^nH_n}{n^{2a}}$

The following classical generalization $$\sum_{n=1}^\infty\frac{(-1)^{n}H_n}{n^{2a}}=-\left(a+\frac 12\right)\eta(2a+1)+\frac12\zeta(2a+1)+\sum_{j=1}^{a-1}\eta(2j)\zeta(2a+1-2j)$$ where $\eta(a)=\...
Ali Shadhar's user avatar
  • 26.6k
6 votes
2 answers
483 views

How to compute $\sum_{n=1}^\infty\frac{(-1)^nH_n}{n^4}$ by real integration only?

How to prove, by real methods that $$\sum_{n=1}^\infty\frac{(-1)^nH_n}{n^4}=\frac12\zeta(2)\zeta(3)-\frac{59}{32}\zeta(5)$$ where $H_n$ is the harmonic number and $\zeta$ is the Riemann zeta ...
Ali Shadhar's user avatar
  • 26.6k
4 votes
0 answers
215 views

Compute $\int_0^1\frac{\tan^{-1}(x)\ln(1+x^2)}{x(1+x)}dx$ using harmonic series

How to prove $$\mathcal{I}=\int_0^1\frac{\tan^{-1}(x)\ln(1+x^2)}{x(1+x)}dx=\frac{\pi^3}{96}-\frac{\pi}{8}\ln^2(2)$$ This problem is proposed by a friend and I managed to compute it using only ...
Ali Shadhar's user avatar
  • 26.6k
1 vote
2 answers
219 views

How to compute $\sum_{n=1}^\infty\frac{(-1)^nH_{n/2}}{n^4}$?

How to prove $$\sum_{n=1}^\infty\frac{(-1)^nH_{n/2}}{n^4}=\frac18\zeta(2)\zeta(3)-\frac{25}{32}\zeta(5)?$$ I came across this series while I was working on a nice integral $\int_0^1\frac{\ln(1+x)\...
Ali Shadhar's user avatar
  • 26.6k
12 votes
5 answers
720 views

Prove $\int_0^1\frac{x^{2n}}{1+x}dx=\ln2+H_n-H_{2n}$

How to prove $$\int_0^1\frac{x^{2n}}{1+x}dx=\ln2+H_n-H_{2n}$$ I used this identity to solve some advanced harmonic series but I didn't provide a proof so I see that it's worth a post so that we ...
Ali Shadhar's user avatar
  • 26.6k
3 votes
1 answer
378 views

Advanced : Compute $\sum_{n=1}^\infty\frac{H_n^4-6H_n^2H_n^{(2)}+8H_nH_n^{(3)}+3\left(H_n^{(2)}\right)^2-6H_n^{(4)}}{n^5}$

How to prove the following equality $$\mathcal S=\sum_{n=1}^\infty\frac{H_n^4-6H_n^2H_n^{(2)}+8H_nH_n^{(3)}+3\left(H_n^{(2)}\right)^2-6H_n^{(4)}}{n^5}\\=672\zeta(9)-240\zeta(2)\zeta(7)-105\zeta(3)\...
Ali Shadhar's user avatar
  • 26.6k
8 votes
1 answer
697 views

Resistant integral $\int_0^1\left(\frac{\ln^2(1-x)\ln^2(1+x)}{1-x}-\frac{\ln^2(2)\ln^2(1-x)}{1-x}\right)\ dx$

Prove, without using harmonic series, that $$I=\int_0^1\left(\frac{\ln^2(1-x)\ln^2(1+x)}{1-x}-\frac{\ln^2(2)\ln^2(1-x)}{1-x}\right)\ dx$$ $$=\frac18\zeta(5)-\frac12\ln2\zeta(4)+2\ln^22\zeta(3)-\...
Ali Shadhar's user avatar
  • 26.6k
6 votes
3 answers
741 views

How to find $\sum_{n=1}^{\infty}\frac{H_nH_{2n}}{n^2}$ using real analysis and in an elegant way?

I have already evaluated this sum: \begin{equation*} \sum_{n=1}^{\infty}\frac{H_nH_{2n}}{n^2}=4\operatorname{Li_4}\left( \frac12\right)+\frac{13}{8}\zeta(4)+\frac72\ln2\zeta(3)-\ln^22\zeta(2)+\frac16\...
Ali Shadhar's user avatar
  • 26.6k
1 vote
1 answer
256 views

Can we prove the divergence of harmonic series like this?

Let $S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\cdots$. Or $S=(1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\cdots)+(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}...
ankit's user avatar
  • 2,481
5 votes
6 answers
607 views

$\sum_{k=1}^nH_k = (n+1)H_n-n$. Why?

This is motivated by my answer to this question. The Wikipedia entry on harmonic numbers gives the following identity: $$ \sum_{k=1}^nH_k=(n+1)H_n-n $$ Why is this? Note that I don't just ...
John Gowers's user avatar
  • 25.4k