The following atypical harmonic series was recently proposed by C.I. Valean, $$ \sum_{n=1}^{\infty}\frac{H_n H_{4n}}{n^2}$$ $$=\frac{13}{12}\log^4(2)-\frac{35}{4}\log^2(2)\zeta(2)+\frac{91}{4}\log(2)\zeta(3)-\frac{665}{16}\zeta(4)+6 \log(2)\pi G -8 G^2$$ $$+12 \pi \Im\biggr\{\operatorname{Li}_3\left(\frac{1+i}{2}\right)\biggr\}+26 \operatorname{Li}_4\left(\frac{1}{2}\right),$$
where $\zeta$ is the Riemann zeta function, $G$ represents the Catalan's constant, and $\operatorname{Li}_n$ denotes the Polylogarithm.
His solution starts with using the well-known property with harmonic numbers and skew-harmonic numbers, that is $\overline{H}_{2n}=H_{2n}-H_n$, or $H_n=H_{2n}-\overline{H}_{2n}$, which leads to \begin{equation*} \sum_{n=1}^{\infty}\frac{H_n H_{4n}}{n^2}=\sum_{n=1}^{\infty}\frac{(H_{2n}-\overline{H}_{2n}) H_{4n}}{n^2}=4\sum_{n=1}^{\infty} \frac{H_{2n} H_{4n}}{(2n)^2}-4\sum_{n=1}^{\infty} \frac{\overline{H}_{2n} H_{4n}}{(2n)^2} \end{equation*} \begin{equation*} =2\sum_{n=1}^{\infty} \frac{H_n H_{2n}}{n^2}-2\sum_{n=1}^{\infty} (-1)^{n-1}\frac{H_n H_{2n}}{n^2}-2\sum_{n=1}^{\infty} \frac{\overline{H}_n H_{2n}}{n^2}+2\sum_{n=1}^{\infty} (-1)^{n-1}\frac{\overline{H}_n H_{2n}}{n^2}, \end{equation*} where the series $$\sum _{n=1}^{\infty} \frac{\overline{H}_nH_{2n}}{n^2}=\frac{507}{64}\zeta(4)-\frac{7}{4}\log(2)\zeta(3)+\frac{5}{4}\log^2(2)\zeta(2)-\frac{7}{48}\log^4(2)-2\pi \Im\biggr \{\operatorname{Li}_3\left(\frac{1+i}{2}\right)\biggr \}-\frac{7}{2}\operatorname{Li}_4\left(\frac{1}{2}\right)$$
and
$$ \sum_{n=1}^{\infty} (-1)^{n-1}\frac{\overline{H}_n H_{2n}}{n^2}=\frac{5}{48}\log^4(2)-\frac{5}{8}\log^2(2)\zeta(2)+\frac{7}{2}\log(2)\zeta(3)-\frac{77}{32}\zeta(4)+\log(2)\pi G-2 G^2+\frac{5}{2}\operatorname{Li}_4\left(\frac{1}{2}\right)$$
are found in More (Almost) Impossible Integrals, Sums, and Series: A New Collection of Fiendish Problems and Surprising Solutions (2023), Chapter $4$, Section $4.57$, p.$454$, then $$ \sum_{n=1}^{\infty}\frac{H_n H_{2n}}{n^2}=\frac{13}{8}\zeta(4)+\frac{7}{2}\log(2)\zeta(3)-\log^2(2)\zeta(2)+\frac{1}{6}\log^4(2)+4 \operatorname{Li}_4\left(\frac{1}{2}\right)$$
is given in the same book, Chapter $4$, Section $4.23$, p.$428$, and finally $$ \sum _{n=1}^{\infty} (-1)^{n-1} \frac{H_n H_{2n}}{n^2}=2G^2-2\log(2)\pi G-\frac{1}{8}\log^4(2)-\frac{21}{8}\log(2)\zeta(3)+\frac{3}{2}\log^2(2)\zeta(2)+\frac{773}{64}\zeta(4)-4\pi \Im\biggr \{\operatorname{Li}_3\left(\frac{1+i}{2}\right)\biggr \}-3\operatorname{Li}_4\left(\frac{1}{2}\right),$$ presented in the same reference, Chapter $4$, Section $4.55$, p.$453$, thus giving the desired result.
Questions:
$1)$. Are such results known in the literature, or similar ones like, say, $\displaystyle \sum_{n=1}^{\infty}\frac{H_n H_{4n}}{(2n-1)^2}$?
$2).$ I would love to see very different ideas, and strategies leading to the desired result, and at the same time remaining in the realm of simple real methods. So, what other ways would we like to explore? (there is absolutely no hurry)