This is a summary of my comments to Gabriel Romon's answer, which gave
$\displaystyle\left|\sum_{k=1}^n \frac{\sin k}k - \frac12(\pi-1)\right| = \left|\sum_{k=n+1}^\infty \frac{\sin k}k \right|$
$= \left|\frac{\cos(n+\frac 12)}{2 \sin(\frac 12)} \frac 1{n+1}
+
\frac{\sin(n+1)-\sin (1)}{4\sin^2(\frac 12)} \frac 1{(n+1)(n+2)}
-\frac{1}{2 \sin^2(\frac 12)} \sum\limits_{k=n+1}^\infty \frac{\sin(k+1)-\sin(1)}{k(k+1)(k+2)}
\right|.$
By the triangle inequality this is
$\le \left|\frac{\cos(n+\frac 12)}{2 \sin(\frac 12)} \frac 1{n+1} + \frac{\sin(n+1)}{4\sin^2(\frac 12)} \frac 1{(n+1)(n+2)}\right| +\left|-\frac{\sin (1)}{4\sin^2(\frac 12)} \frac 1{(n+1)(n+2)} -\frac{1}{2 \sin^2(\frac 12)} \sum\limits_{k=n+1}^\infty \frac{\sin(k+1)-\sin(1)}{k(k+1)(k+2)} \right|.$
For the first part, $\left|\cos(x+1/2) + b \sin(x+1)\right| < 1+ \frac34 b$ for $0 \lt b \le 1$, and $\frac{3/4}{2\sin(1/2)}<4/5$, so $\left| \frac{\cos(n+\frac 12)}{2 \sin(\frac 12)} \frac 1{n+1} + \frac{\sin(n+1)}{4\sin^2(\frac 12)} \frac 1{(n+1)(n+2)} \right| < \frac{1}{2 \sin(\frac 12)} \frac 1{n+1} + \frac45 \frac{1}{2 \sin(\frac 12)} \frac 1{(n+1)(n+2)}$.
For the second part $\left|-\frac{\sin (1)}{4\sin^2(\frac 12)} \frac 1{(n+1)(n+2)} -\frac{1}{2 \sin^2(\frac 12)} \sum\limits_{k=n+1}^\infty \frac{\sin(k+1)-\sin(1)}{k(k+1)(k+2)}\right| = \left|\frac{1}{2 \sin^2(\frac 12)} \sum\limits_{k=n+1}^\infty \frac{\sin(k+1)}{k(k+1)(k+2)}\right|$ which is $\mathcal{O}(1/n^3)$, and smaller than $\frac15 \frac{1}{2 \sin(\frac 12)} \frac 1{(n+1)(n+2)}$ for $n>8$.
Adding these two parts gives an absolute difference less than $\frac{1}{2 \sin(\frac 12)}\left( \frac 1{n+1} + \frac 1{(n+1)(n+2)}\right) < \frac{1}{2 \sin(\frac 12)}\frac1n$ with the first eight terms checked to ensure they meet the overall bound.
Thus $$\left|\sum_{k=1}^n \frac{\sin k}k - \frac12(\pi-1)\right|< \frac1{2\sin(1/2)}\frac{1}{n}$$ where $\frac1{2\sin(1/2)}\approx 1.0429148214667441.$
As the first part hints, there are many values of $n$ for which the absolute difference exceeds $\frac1{2\sin(1/2)}\frac{1}{n+1}$, starting with $n=3,6,9,12,31,34,53,56,75,78,\ldots$, suggesting this is the tightest multiple of $\frac1n$.