$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\sum_{k = 0}^{n}{\pars{-1}^{k}{n \choose k}^{2} \over k + 1} & =
\int_{0}^{1}\sum_{k = 0}^{n}{n \choose k}^{2}\pars{-t}^{k}\,\dd t =
\int_{0}^{1}\sum_{k = 0}^{n}{n \choose k}\pars{-t}^{k}
\bracks{z^{n - k}}\pars{1 + z}^{n}\,\dd t
\\[5mm] & =
\bracks{z^{n}}\pars{1 + z}^{n}\int_{0}^{1}\sum_{k = 0}^{n}
{n \choose k}\pars{-tz}^{k}\,\dd t
\\[5mm] & =
\bracks{z^{n}}\pars{1 + z}^{n}\int_{0}^{1}\pars{1 - tz}^{n}\,\dd t =
\bracks{z^{n}}\pars{1 + z}^{n}\,
{\pars{1 - z}^{n + 1} - 1 \over -\pars{n + 1}z}
\\[5mm] & =
-\,{1 \over n + 1}\bracks{z^{n + 1}}\pars{1 - z^{2}}^{n}\pars{1 - z}
\\[5mm] & =
{1 \over n + 1}\braces{\bracks{z^{n}}\pars{1 - z^{2}}^{n} -
\bracks{z^{n + 1}}\pars{1 - z^{2}}^{n}}
\\[5mm] & =
\bbx{\left\{\begin{array}{lcl}
\ds{{1 \over n + 1}{n \choose n/2}\pars{-1}^{n/2}} &
\mbox{if} & \ds{n}\ \mbox{is}\ even
\\[3mm]
\ds{{1 \over n + 1}{n \choose \bracks{n + 1}/2}\pars{-1}^{\pars{n - 1}/2}} &
\mbox{if} & \ds{n}\ \mbox{is}\ odd
\end{array}\right.} \\ &
\end{align}