14
$\begingroup$

For example, I have a two-dimensional rotation matrix $$ \begin{bmatrix} 0.5091 & -0.8607 \\ 0.8607 & \phantom{-}0.5091 \end{bmatrix} $$ and I have a vector I'd like to rotate, e.g. $(1, -0.5)$.

My problem is to find an inverse of the rotation matrix so that I can later “undo” the rotation performed on the vector so that I get back the original vector.

The rotation matrix is not parametric, created via eigendecomposition, I can't use angles to easily create an inverse matrix.

$\endgroup$

2 Answers 2

28
$\begingroup$

Recall that rotation matrices are orthogonal therefore

$$A^{-1}=A^T$$

indeed note that

$$A^{-1}=\begin{bmatrix}\cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha\end{bmatrix}^{-1} =\begin{bmatrix}\cos(-\alpha) & -\sin(-\alpha)\\ \sin(-\alpha) & \cos(-\alpha)\end{bmatrix}=\begin{bmatrix}\cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha\end{bmatrix}=A^T$$

$\endgroup$
1
  • 1
    $\begingroup$ @aleksv I've also added a simple way to see that assuming the opposite angle. You are welcome! Bye $\endgroup$
    – user
    Commented Aug 27, 2018 at 6:36
2
$\begingroup$

That's easy: $$\begin{pmatrix}\cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha\end{pmatrix}^{-1} =\begin{pmatrix}\cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha\end{pmatrix}$$

$\endgroup$

You must log in to answer this question.

Not the answer you're looking for? Browse other questions tagged .