Skip to main content
added 296 characters in body
Source Link
user
  • 159.9k
  • 13
  • 83
  • 153

Recall that rotation matrices are orthogonal therefore

$$A^{-1}=A^T$$

indeed note that

$$A^{-1}=\begin{bmatrix}\cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha\end{bmatrix}^{-1} =\begin{bmatrix}\cos(-\alpha) & -\sin(-\alpha)\\ \sin(-\alpha) & \cos(-\alpha)\end{bmatrix}=\begin{bmatrix}\cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha\end{bmatrix}=A^T$$

Recall that rotation matrices are orthogonal therefore

$$A^{-1}=A^T$$

Recall that rotation matrices are orthogonal therefore

$$A^{-1}=A^T$$

indeed note that

$$A^{-1}=\begin{bmatrix}\cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha\end{bmatrix}^{-1} =\begin{bmatrix}\cos(-\alpha) & -\sin(-\alpha)\\ \sin(-\alpha) & \cos(-\alpha)\end{bmatrix}=\begin{bmatrix}\cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha\end{bmatrix}=A^T$$

Source Link
user
  • 159.9k
  • 13
  • 83
  • 153

Recall that rotation matrices are orthogonal therefore

$$A^{-1}=A^T$$