Given the sequence $x_n=\frac{n}{n+1}$, find constants $a,b$ such that $x_n = 1 + O(n^{-a})$ and $x_n = 1+o(n^{-b})$
For $a$, I need
$$\lim_{n\to\infty}\frac{x_n-1}{n^{-a}}=\lim_{n\to\infty}\frac{\frac{n}{n+1}-1}{n^{-a}}=\lim_{n\to\infty}\frac{-1}{(n+1)n^{-a}}\in\Bbb{R}$$ but I'm not sure how to proceed.
For $b$, I need
$$\dots=\lim_{n\to\infty}\frac{-1}{(n+1)n^{-b}}=0$$ Here I think it's enough that $b \leq 0$, but I'm not sure how to justify that.