I'm confused about the existence of the limit of a real-valued function $f: \mathbb{R}\rightarrow \mathbb{R}$ and notation.
Suppose that $\forall \epsilon>0$ $\exists \delta_{\epsilon}>0$ s.t. $\forall$ $0<|x-a|<\delta_{\epsilon}$ we have $0<|f(x)-L|<\epsilon$. Then we can write $\lim_{x\rightarrow a}f(x)=L$ which denotes that "the limit of $f(\cdot)$ for $x$ approaching $a$ exists and is equal to $L$".
Suppose instead that the function $f(\cdot)$ goes to $+\infty$ when $x \rightarrow a$. If I have understood correctly the definition of limit, in this case "the limit of $f(\cdot)$ for $x$ approaching $a$ does NOT exists". My question is: why do we write $\lim_{x \rightarrow a} f(x)=+\infty$ when the function has no limit?