Definition of integral is given $$ \int f d\mu=\sup{\left\{\int s\ d\mu : 0 \leq s \leq f , s \ \text{ is a simple function} \right\}} $$
Now let $f: \mathbb{N} \rightarrow [0,\infty)$ be a non-negative measurable function on the natural numbers and $\mu$ is the counting measure on $\mathbb{N}$. Prove the following using definition of integral: $$ \int_{\mathbb{N}}f\ d\mu =\sum_{k=1}^{\infty} f(k) $$
I could prove that $\int_{\mathbb{N}}f\ d\mu \geq \sum_{k=1}^{\infty} f(k)$ using simple functions of the form $f_N=\sum_{k=1}^N f(k)1\{n=k\}$. How do I prove the other direction ?
Note: We shouldn't use Monotone Convergence Theorem.