The Cauchy-Schwarz integral inequality is as follows:
$$ \displaystyle \left({\int_a^b f \left({t}\right) g \left({t}\right) \ \mathrm d t}\right)^2 \le \int_a^b \left({f \left({t}\right)}\right)^2 \mathrm d t \int_a^b \left({g \left({t}\right)}\right)^2 \mathrm d t $$
How do I prove this using multivariable calculus methods, preferably with double integrals?