Matemātikā vektoriālais reizinājums ir bināra operācija, kas diviem trīsdimensiju Eiklīda telpā esošiem vektoriem piekārto vektoru, kas perpendikulārs dotajiem vektoriem un kura garums vienāds ar sākotnējo vektoru veidotā paralelograma laukumu.
Vektoriālo reizinājumu no diviem vektoriem ir iespējams definēt tikai trīs un septiņās dimensijās.[1]
Par trīsdimensiju Eiklīda telpā esošu vektoru un vektoriālo reizinājumu sauc tādu vektoru , ka
- un ,
- , kur θ ir leņķis starp vektoriem un ,
- vektors ir orientēts tā, ka trijnieks veido labēju bāzi.
Vektoriālā reizinājuma darbību apzīmē ar "×", piemēram, .
Ja un , tad
Vektoriālo reizinājumu var aprēķināt ar formāla determinanta palīdzību:
kur ir vienības vektori, kas vērsti koordinātu asu virzienos.
Determinanta aprēķināšanu 3×3 matricai atvieglo Sarrusa metode.
Ja , tad
Vektoriālā reizinājuma i-to komponenti var aprēķināt šādi:
kur ir Levi-Čivita simbols. Ja katru no komponentēm sareizina ar attiecīgo bāzes vektoru un saskaita kopā, tad iegūst
Vektoriālais reizinājums ir antikomutatīvs:
No tā izriet, ka
Divkāršā vektoriālā reizinājuma formula (viegli atcerēties kā "BAC mīnus CAB"):
Vektoriālais reizinājums nav asociatīvs, taču tas apmierina Jakobi sakarību