Papers by Andre Schuiteman
Since the last classification of Orchidaceae in 2003, there has been major progress in the determ... more Since the last classification of Orchidaceae in 2003, there has been major progress in the determination of relationships, and we present here a revised classification including a list of all 736 currently recognized genera. A number of generic changes have occurred in Orchideae (Orchidoideae), but the majority of changes have occurred in Epidendroideae. In the latter, almost all of the problematic placements recognized in the previous classification 11 years ago have now been resolved. In Epidendroideae, we have recognized three new tribes (relative to the last classification): Thaieae (monogeneric) for Thaia, which was previously considered to be the only taxon incertae sedis; Xerorchideae (monogeneric) for Xerorchis; and Wullschlaegelieae for achlorophyllous Wullschlaegelia, which had tentatively been placed in Calypsoeae. Another genus, Devogelia, takes the place of Thaia as incertae sedis in Epidendroideae. Gastrodieae are clearly placed among the tribes in the neottioid grade, with Neottieae sister to the remainder of Epidendroideae. Arethuseae are sister to the rest of the higher Epidendroideae, which is unsurprising given their mostly soft pollinia. Tribal relationships within Epidendroideae have been much clarified by analyses of multiple plastid DNA regions and the low-copy nuclear gene Xdh. Four major clades within the remainder of Epidendroideae are recognized: Vandeae/Podochileae/Collabieae, Cymbidieae, Malaxideae and Epidendreae, the last now including Calypsoinae (previously recognized as a tribe on its own) and Agrostophyllinae s.s. Agrostophyllinae and Collabiinae were unplaced subtribes in the 2003 classification. The former are now split between two subtribes, Agrostophyllinae s.s. and Adrorhizinae, the first now included in Epidendreae and the second in Vandeae. Collabiinae, also probably related to Vandeae, are now elevated to a tribe along with Podochileae. Malaxis and relatives are placed in Malaxidinae and included with Dendrobiinae in Malaxideae. The increased resolution and content of larger clades, recognized here as tribes, do not support the 'phylads' in Epidendroideae proposed 22 years ago by Dressler.
Botanical Journal of the Linnean Society, 2015
ABSTRACT Since the last classification of Orchidaceae in 2003, there has been major progress in t... more ABSTRACT Since the last classification of Orchidaceae in 2003, there has been major progress in the determination of relationships, and we present here a revised classification including a list of all 736 currently recognized genera. A number of generic changes have occurred in Orchideae (Orchidoideae), but the majority of changes have occurred in Epidendroideae. In the latter, almost all of the problematic placements recognized in the previous classification 11 years ago have now been resolved. In Epidendroideae, we have recognized three new tribes (relative to the last classification): Thaieae (monogeneric) for Thaia, which was previously considered to be the only taxon incertae sedis; Xerorchideae (monogeneric) for Xerorchis; and Wullschlaegelieae for achlorophyllous Wullschlaegelia, which had tentatively been placed in Calypsoeae. Another genus, Devogelia, takes the place of Thaia as incertae sedis in Epidendroideae. Gastrodieae are clearly placed among the tribes in the neottioid grade, with Neottieae sister to the remainder of Epidendroideae. Arethuseae are sister to the rest of the higher Epidendroideae, which is unsurprising given their mostly soft pollinia. Tribal relationships within Epidendroideae have been much clarified by analyses of multiple plastid DNA regions and the low-copy nuclear gene Xdh. Four major clades within the remainder of Epidendroideae are recognized: Vandeae/Podochileae/Collabieae, Cymbidieae, Malaxideae and Epidendreae, the last now including Calypsoinae (previously recognized as a tribe on its own) and Agrostophyllinae s.s. Agrostophyllinae and Collabiinae were unplaced subtribes in the 2003 classification. The former are now split between two subtribes, Agrostophyllinae s.s. and Adrorhizinae, the first now included in Epidendreae and the second in Vandeae. Collabiinae, also probably related to Vandeae, are now elevated to a tribe along with Podochileae. Malaxis and relatives are placed in Malaxidinae and included with Dendrobiinae in Malaxideae. The increased resolution and content of larger clades, recognized here as tribes, do not support the ‘phylads’ in Epidendroideae proposed 22 years ago by Dressler. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 177, 151–174.
PLoS ONE, 2014
Collabieae (Orchidaceae) is a long neglected tribe with confusing tribal and generic delimitation... more Collabieae (Orchidaceae) is a long neglected tribe with confusing tribal and generic delimitation and little-understood phylogenetic relationships. Using plastid matK, psaB, rbcL, and trnH-psbA DNA sequences and morphological evidence, the phylogenetic relationships within the tribe Collabieae were assessed as a basis for revising their tribal and generic delimitation. Collabieae (including the previously misplaced mycoheterotrophic Risleya) is supported as monophyletic and nested within a superclade that also includes Epidendreae, Podochileae, Cymbidieae and Vandeae. Risleya is nested in Collabiinae and sister to Chrysoglossum, a relationship which, despite their great vegetative differences, is supported by floral characters. Ania is a distinct genus supported by both morphological and molecular evidence, while redefined Tainia includes Nephelaphyllum and Mischobulbum. Calanthe is paraphyletic and consists four clades; the genera Gastrorchis, Phaius and Cephalantheropsis should be subsumed within Calanthe. Calanthe sect. Ghiesbreghtia is nested within sect. Calanthe, to which the disputed Calanthe delavayi belongs as well. Our results indicate that, in Collabieae, habit evolved from being epiphytic to terrestrial.
Philosophical Transactions of the Royal Society B: Biological Sciences, 2004
Epiphytes are a characteristic component of tropical rainforests. Out of the 25 000 orchid specie... more Epiphytes are a characteristic component of tropical rainforests. Out of the 25 000 orchid species currently known to science, more than 70% live in tree canopies. Understanding when and how these orchids diversified is vital to understanding the history of epiphytic biomes. We investigated whether orchids managed to radiate so explosively owing to their predominantly epiphytic habit and/or their specialized pollinator systems by testing these hypotheses from a statistical and phylogenetic standpoint. For the first approach, species numbers of 100 randomly chosen epiphytic and terrestrial genera were compared. Furthermore, the mean number of pollinators per orchid species within the five subfamilies was calculated and correlated with their time of diversification and species richness. In the second approach, molecular epiphytic orchid phylogenies were screened for clades with specific suites of epiphytic adaptations. Epiphytic genera were found to be significantly richer in species than terrestrial genera both for orchids and non-orchids. No evidence was found for a positive association between pollinator specialization and orchid species richness. Repeated associations between a small body size, short life cycle and specialized clinging roots of twig epiphytes in Bulbophyllinae and Oncidiinae were discovered. The development of twig epiphytism in the first group seems repeatedly correlated with speciation bursts.
Nordic Journal of Botany, 2008
Molecular Phylogenetics and Evolution, 2014
The subtribe Orchidinae, distributed predominantly in Eastern Asia and the Mediterranean, present... more The subtribe Orchidinae, distributed predominantly in Eastern Asia and the Mediterranean, presents some of the most intricate taxonomic problems in the family Orchidaceae with respect to generic delimitation. Based on three DNA markers (plastid matK, rbcL, and nuclear ITS), morphological characters, and a broad sampling of Orchidinae and selected Habenariinae mainly from Asia (a total of 153 accessions of 145 species in 31 genera), generic delimitation and phylogenetic relationships within the subtribe Orchidinae and Habenariinae from Asia were assessed. Orchidinae and Asian Habenariinae are monophyletic, and Orchidinae is divided into distinct superclades. Many genera, such as Amitostigma, Habenaria, Hemipilia, Herminium, Platanthera, Peristylus and Ponerorchis, are not monophyletic. Habenaria is subdivided into two distantly related groups, while Platanthera is subdivided into three even more disparate groups. Many previously undetected phylogenetic relationships, such as clades formed by the Amitostigma-Neottianthe-Ponerorchis complex, Platanthera latilabris group, Ponerorchis chrysea, Sirindhornia, and Tsaiorchis, are well supported by both molecular and morphological evidence. We propose to combine Hemipiliopsis with Hemipilia, Amitostigma and Neottianthe with Ponerorchis, Smithorchis with Platanthera, and Aceratorchis and Neolindleya with Galearis, and to establish a new genus to accommodate Ponerorchis chrysea. Tsaiorchis and Sirindhornia are two distinctive genera supported by both molecular data and morphological characters. A new genus, Hsenhsua, and 41 new combinations are proposed based on these findings.
Molecular Phylogenetics and Evolution, 2013
Dendrobium is one of the three largest genera and presents some of the most intricate taxonomic p... more Dendrobium is one of the three largest genera and presents some of the most intricate taxonomic problems in the family Orchidaceae. Based on five DNA markers and a broad sampling of Dendrobium and its relatives from mainland Asia (109 species), our results indicate that mainland Asia Dendrobium is divided into eight clades (with two unplaced species) that form polytomies along the spine of the cladogram. Both Dendrobium and Epigeneium are well supported as monophyletic, whereas sect. Dendrobium, sect. Densiflora, sect. Breviflores, sect. Holochrysa, are paraphyletic/polyphyletic. Many ignored phylogenetic relationships, such as the one of major clades formed by D. jenkinsii and D. lindleyi (two members of sect. Densiflora), the Aphyllum group, the Devonianum group, the Catenatum group, the Crepidatum group, and the Dendrobium moniliforme complex are well supported by both molecular and morphological evidence. Based on our data, we propose to broaden sect. Dendrobium to include sect. Stuposa, sect. Breviflores, and sect. Holochrysa and to establish a new section to accommodate D. jenkinsii and D. lindleyi. Our results indicated that it is preferable to use a broad generic concept of Dendrobium and to pursue an improved infrageneric classification at sectional level, taking into account both morphology and current molecular findings.
Kew Bulletin, 2014
ABSTRACT The genus Xenikophyton is reduced to synonymy under Schoenorchis. X. seidenfadenianum is... more ABSTRACT The genus Xenikophyton is reduced to synonymy under Schoenorchis. X. seidenfadenianum is synonymised with X. smeeanum, which is here transferred to Schoenorchis. A full description and illustrations are provided of S. smeeana.
Kew Bulletin, 2012
ABSTRACT A new orchid species from Assam, Ornithochilus cacharensis Barbhuiya, B. K. Dutta &a... more ABSTRACT A new orchid species from Assam, Ornithochilus cacharensis Barbhuiya, B. K. Dutta & Schuit., is described. It differs from the other species in the small genus Ornithochilus (Lindl.) Benth. in floral morphology and in the uniformly red-purple flowers. The taxonomy of the genus is discussed and a key to the known taxa of Ornithochilus is presented.
Comptes Rendus Biologies, 2009
The aim of this study was to characterise the remarkable architectural development of the orchid ... more The aim of this study was to characterise the remarkable architectural development of the orchid species Chrysoglossum ornatum Blume. Living specimens were collected in two sites in Laos, a country where this species had not been recorded before. Examination of herbarium material of the three other species of Chrysoglossum has confirmed the regularity of this growth pattern at the genus level. Such a vegetative architecture, unique within the plant kingdom, was first described by for a South American orchid species, Gongora quinquenervis Ruiz and Pav. The nature of this growth pattern within the genus Chrysoglossum and within this particular species, as well as the occurrence of similar patterns in the Orchidaceae is discussed. To cite this article:
Botanical Journal of the Linnean Society, 2008
A checklist of the Orchidaceae of Timor is presented, with emphasis on the eastern half of the is... more A checklist of the Orchidaceae of Timor is presented, with emphasis on the eastern half of the island (East Timor), based on historical herbarium collections and recent botanical explorations. This list comprises 38 genera with 66 species, including 15 new genera and 32 new species records for this island. Moreover, four new species are described: Bulbophyllum sundaicum, Habenaria ankylocentron, Habenaria cauda-porcelli, and Pterostylis timorensis. Of these, we consider the finding of a new species of Pterostylis to be especially noteworthy, because this species seems to be more closely related to certain Australian members of the genus than to the Malesian ones, suggesting earlier contacts of Timor with Australia. Four new synonyms are proposed: Calanthe veratrifolia var. timorensis J.J.Sm. (C. triplicata), Habenaria cornuta Span. (H. giriensis), H. grandis Benth. ex Ridl. (Peristylus goodyeroides), and H. mutica Span. (H. elongata).
Botanical Journal of the Linnean Society, 2011
Bulbophyllum nocturnum, a species of section Epicrianthes from New Britain, is described and illu... more Bulbophyllum nocturnum, a species of section Epicrianthes from New Britain, is described and illustrated. It is the first known example of an orchid species in which the flowers open after dark and close in the morning. The poorly understood pollination biology of section Epicrianthes, a clade with highly unusual flowers, is discussed. Attention is drawn to the close resemblance between the petal appendages of some species and the fruiting bodies of certain Myxogastria.
Uploads
Papers by Andre Schuiteman