Journal of Orthopaedic Surgery and Research, Nov 22, 2016
Background: This study compares the cyclic loading properties and failure loads of two screw comb... more Background: This study compares the cyclic loading properties and failure loads of two screw combinations on a synthetic Schatzker type 1 tibia fracture model. Our hypothesis was that after adequate compression with first a partially threaded screw, addition of a fully threaded screw would provide more stability than an addition of a second partially threaded screw. Methods: The Schatzker type 1 tibial plateau fracture model was created. Fixation was obtained in group A (n = 10) with two partially threaded screws and in group B (n = 10) with one fully threaded screw and one partially threaded screw. Load-displacement evaluation was made at each 1000-cycle interval up to 10,000 cycles. Failure load was identified as the load creating a 2-mm displacement. Two-factor (groups and periods) repeated measurement analysis of variance and independent sample t tests were used. Results: According to the two-factor repeated analysis, there was no significant difference for periods (p = 0.29) and time-period interaction (p = 0.59) (Wilk's Lambda F value, 1.507 and 0.871, respectively). In the test of betweensubject effects, there was no significant difference between groups in terms of cyclic loadings (p = 0.06, F = 4.065). However, in the t test for each 1000-cycle interval, the value of mean displacement in group B was significantly lower than that in group A in the initial, 1000-, 2000-, and 3000-cycle intervals (p = 0.023, 0.031, 0.025, 0.043, respectively). The mean displacement and standard deviations increased with the number of cycles. The mean range of displacement initially was 0.66 mm for group A and 0.36 mm for group B. The mean range of displacement after 10,000 cycles was 0.79 mm for group A and 0.44 mm for group B. The mean failure load value was 682 ± 234 N for group A and 835 ± 245 N for group B. In independent sample t tests, there were no significant differences between the two groups in terms of failure load (p > 0.05). Conclusions: Obtaining fixation with one partially and one fully threaded screw can minimize displacement at the fracture site at early cyclic loadings.
The aim of this study is to assess the biomechanical advantage of adding strut allograft and the ... more The aim of this study is to assess the biomechanical advantage of adding strut allograft and the effect of its position on the construct in Vancouver type B1 fractures. Fifteen forth-generation synthetic femurs were used and created a fracture model at the tip of prosthesis, and subsequently fixated with a lateral plate only, lateral plate and medial strut, lateral plate and anterior strut. Rotational and axial tests were performed. In all loading tests, the plate with medial strut group was stiffer than the other constructs and had higher failure load values and had less displacement in the fracture site. A combination of a plate with a medial strut allograft provides more mechanical stability on periprosthetic femoral fractures near the tip of a total hip arthroplasty.
Journal of Orthopaedic Surgery and Research, Nov 22, 2016
Background: This study compares the cyclic loading properties and failure loads of two screw comb... more Background: This study compares the cyclic loading properties and failure loads of two screw combinations on a synthetic Schatzker type 1 tibia fracture model. Our hypothesis was that after adequate compression with first a partially threaded screw, addition of a fully threaded screw would provide more stability than an addition of a second partially threaded screw. Methods: The Schatzker type 1 tibial plateau fracture model was created. Fixation was obtained in group A (n = 10) with two partially threaded screws and in group B (n = 10) with one fully threaded screw and one partially threaded screw. Load-displacement evaluation was made at each 1000-cycle interval up to 10,000 cycles. Failure load was identified as the load creating a 2-mm displacement. Two-factor (groups and periods) repeated measurement analysis of variance and independent sample t tests were used. Results: According to the two-factor repeated analysis, there was no significant difference for periods (p = 0.29) and time-period interaction (p = 0.59) (Wilk's Lambda F value, 1.507 and 0.871, respectively). In the test of betweensubject effects, there was no significant difference between groups in terms of cyclic loadings (p = 0.06, F = 4.065). However, in the t test for each 1000-cycle interval, the value of mean displacement in group B was significantly lower than that in group A in the initial, 1000-, 2000-, and 3000-cycle intervals (p = 0.023, 0.031, 0.025, 0.043, respectively). The mean displacement and standard deviations increased with the number of cycles. The mean range of displacement initially was 0.66 mm for group A and 0.36 mm for group B. The mean range of displacement after 10,000 cycles was 0.79 mm for group A and 0.44 mm for group B. The mean failure load value was 682 ± 234 N for group A and 835 ± 245 N for group B. In independent sample t tests, there were no significant differences between the two groups in terms of failure load (p > 0.05). Conclusions: Obtaining fixation with one partially and one fully threaded screw can minimize displacement at the fracture site at early cyclic loadings.
The aim of this study is to assess the biomechanical advantage of adding strut allograft and the ... more The aim of this study is to assess the biomechanical advantage of adding strut allograft and the effect of its position on the construct in Vancouver type B1 fractures. Fifteen forth-generation synthetic femurs were used and created a fracture model at the tip of prosthesis, and subsequently fixated with a lateral plate only, lateral plate and medial strut, lateral plate and anterior strut. Rotational and axial tests were performed. In all loading tests, the plate with medial strut group was stiffer than the other constructs and had higher failure load values and had less displacement in the fracture site. A combination of a plate with a medial strut allograft provides more mechanical stability on periprosthetic femoral fractures near the tip of a total hip arthroplasty.
Uploads
Papers by Bugra Bekler