Photonic spatial quantum states are a subject of great interest for applications in quantum commu... more Photonic spatial quantum states are a subject of great interest for applications in quantum communication. One important challenge has been how to dynamically generate these states using only fiber-optical components. Here we propose and experimentally demonstrate an all-fiber system that can dynamically switch between any general transverse spatial qubit state based on linearly polarized modes. Our platform is based on a fast optical switch based on a Sagnac interferometer combined with a photonic lantern and few-mode optical fibers. We show switching times between spatial modes on the order of 5 ns and demonstrate the applicability of our scheme for quantum technologies by demonstrating a measurement-device-independent (MDI) quantum random number generator based on our platform. We run the generator continuously over 15 hours, acquiring over 13.46 Gbits of random numbers, of which we ensure that at least 60.52% are private, following the MDI protocol. Our results show the use of p...
An essential component of future quantum networks is an optical switch capable of dynamically rou... more An essential component of future quantum networks is an optical switch capable of dynamically routing single-photons. Here we implement such a switch, based on a fiber-optical Sagnac interferometer design. The routing is implemented with a pair of fast electro-optical telecom phase modulators placed inside the Sagnac loop, such that each modulator acts on an orthogonal polarization component of the single-photons, in order to yield polarization-independent capability that is crucial for several applications. We obtain an average extinction ratio of more than 19 dB between both outputs of the switch. Our experiment is built exclusively with commercial off-the-shelf components, thus allowing direct compatibility with current optical communication systems.
Photonic spatial quantum states are a subject of great interest for applications in quantum commu... more Photonic spatial quantum states are a subject of great interest for applications in quantum communication. One important challenge has been how to dynamically generate these states using only fiber-optical components. Here we propose and experimentally demonstrate an all-fiber system that can dynamically switch between any general transverse spatial qubit state based on linearly polarized modes. Our platform is based on a fast optical switch based on a Sagnac interferometer combined with a photonic lantern and few-mode optical fibers. We show switching times between spatial modes on the order of 5 ns and demonstrate the applicability of our scheme for quantum technologies by demonstrating a measurement-device-independent (MDI) quantum random number generator based on our platform. We run the generator continuously over 15 hours, acquiring over 13.46 Gbits of random numbers, of which we ensure that at least 60.52% are private, following the MDI protocol. Our results show the use of p...
An essential component of future quantum networks is an optical switch capable of dynamically rou... more An essential component of future quantum networks is an optical switch capable of dynamically routing single-photons. Here we implement such a switch, based on a fiber-optical Sagnac interferometer design. The routing is implemented with a pair of fast electro-optical telecom phase modulators placed inside the Sagnac loop, such that each modulator acts on an orthogonal polarization component of the single-photons, in order to yield polarization-independent capability that is crucial for several applications. We obtain an average extinction ratio of more than 19 dB between both outputs of the switch. Our experiment is built exclusively with commercial off-the-shelf components, thus allowing direct compatibility with current optical communication systems.
Uploads
Papers by alvaro alarcon