Papers by Zilá Luz Paulino Simões
Journal of Insect Physiology, 2021
Nosema ceranae is a microsporidium that infects Apis mellifera, causing diverse physiological and... more Nosema ceranae is a microsporidium that infects Apis mellifera, causing diverse physiological and behavioral alterations. Given the existence of individual and social mechanisms to reduce infection and fungal spread in the colony, bees may respond differently to infection depending on their rearing conditions. In this study, we investigated the effect of N. ceranae in honey bee foragers naturally infected with different fungal loads in a tropical region. In addition, we explored the effects of N. ceranae artificially infected young bees placed in a healthy colony under field conditions. Honey bees naturally infected with higher loads of N. ceranae showed downregulation of genes from Toll and IMD immune pathways and antimicrobial peptide (AMP) genes, but hemolymph total protein amount and Vitellogenin (Vg) titers were not affected. Artificially infected bees spread N. ceranae to the controls in the colony, but fungal loads were generally lower than those observed in cages, probably because of social immunity. Although no significant changes in mRNA levels of AMP-encoding were observed, N. ceranae artificially infected bees showed downregulation of miR-989 (an immune-related microRNA), lower vitellogenin gene expression, and decreased hemolymph Vg titers. Our results demonstrate for the first time that natural infection by N. ceranae suppresses the immune system of honey bee foragers in the field. This parasite is detrimental to the immune system of young and old bees, and disease spread, mitigation and containment will depend on the colony environment.
Experimental Gerontology, 2019
Young honey bee workers (0 to 2-3 weeks old) perform tasks inside the colony, including brood car... more Young honey bee workers (0 to 2-3 weeks old) perform tasks inside the colony, including brood care (nursing), whereas older workers undergo foraging tasks during the next 3-4 weeks, when an intrinsic senescence program culminates in worker death. We hypothesized that foragers are less able to react to immune system stimulation than nurse bees and that this difference is due to an inefficient immune response in foragers. To test this hypothesis, we used an experimental design that allowed us to uncouple chronological age and behavior status (nursing/foraging). Worker bees from a normal age demography colony (where workers naturally transit from nursing to foraging tasks as they age) and of a single-cohort colony setup (composed of same-aged workers performing nursing or foraging tasks) were tested for survival and capability of activation of the immune system after bacterial injection. Expression of an antimicrobial peptide gene, defensin-1 (def-1), was used to assess immune system activation. We then checked whether the immune response includes changes in the expression of aging-and behavior-related genes, specifically vitellogenin (vg), juvenile hormone esterase (jhe), and insulin-like peptide-1 (ilp-1). We found a significant difference in survival rate between bees of different ages but carrying out the same tasks. Our results thus indicate that the bees' immune response is negatively affected by intrinsic senescence. Additionally, independent of age, foragers had a shorter lifespan than nurses after bacterial infection, although both were able to induce def-1 transcription. In the normal age demography colony, the immune system activation resulted in a reduction in the expression of vg, jhe and ilp-1 genes in foragers, but not in the nurse bees, demonstrating that age and behavior are both important influences on the bees' immune response. By disentangling the effects of age and behavior in the single-cohort colony, we found that vg, jhe and ilp-1 response to immune system stimulation was independent of behavior. Younger bees were able to mount a stronger immune response than older bees, thus highlighting age as an important factor for immunity. Taken together, our results provide new insights into how age and behavior affect the honey bee's immune response.
Journal of Insect Physiology, 2000
Journal of Insect Physiology, 2002
Journal of Insect Physiology, 2005
A cDNA encoding a hexamerin subunit of the Africanized honey bee (Apis mellifera) was isolated an... more A cDNA encoding a hexamerin subunit of the Africanized honey bee (Apis mellifera) was isolated and completely sequenced. In the deduced translation product we identified the N-terminal sequence typical of the honey bee HEX 70b hexamerin. The genomic sequence consists of seven exons flanked by GT/AT exon/intron splicing sites, which encode a 683 amino acid polypeptide with an estimated molecular mass of 79.5 kDa, and pI value of 6.72. Semi-quantitative RT-PCR revealed high levels of Hex 70b message in larval stages, followed by an abrupt decrease during prepupal-pupal transition. This coincides with decaying titers of juvenile hormone (JH) and ecdysteroids that is the signal for the metamorphic molt. To verify whether the high Hex 70b expression is dependent on high hormone levels, we treated 5th instar larvae with JH or 20-hydroxyecdysone (20E). In treated larvae, Hex 70b expression was maintained at high levels for a prolonged period of time than in the respective controls, thus indicating a positive hormone regulation at the transcriptional level. Experiments designed to verify the influence of the diet on Hex 70b expression showed similar transcript amounts in adult workers fed on a protein-enriched diet or fed exclusively on sugar. However, sugar-fed workers responded to the lack of dietary proteins by diminishing significantly the amount of HEX 70b subunits in hemolymph. Apparently, they use HEX 70b to compensate the lack of dietary proteins.
Insect Biochemistry and Molecular Biology, 2013
Insect Biochemistry and Molecular Biology, 2002
Insect Biochemistry and Molecular Biology, 2004
Archives of Insect Biochemistry and Physiology, 2008
Farnesoic acid O‐methyl transferase (FAMeT) is the enzyme that catalyzes the formation of methyl ... more Farnesoic acid O‐methyl transferase (FAMeT) is the enzyme that catalyzes the formation of methyl farnesoate (MF) from farnesoic acid (FA) in the biosynthetic pathway of juvenile hormone (JH). This work reports the cloning, sequencing, and expression of FAMeT gene from the stingless bee Melipona scutellaris (MsFAMeT). The MsFAMeT in silico analysis showed that greatest sequence similarity is found in Apis mellifera and other insects, while relatively less similarity is shown in crustaceans. Evidence of alternative splicing of a 27 nucleotide (nt) microexon explains the presence of the detected isoforms, 1 and 2. The expression analysis of the two isoforms showed a marked difference when castes were compared, suggesting that they could be involved differently in the JH metabolism in M. scutellaris, providing new insights for the comprehension of female plasticity. Arch. Insect Biochem. Physiol. 2007. © 2007 Wiley‐Liss, Inc.
Uploads
Papers by Zilá Luz Paulino Simões