Knowing the condition of natural resources in national parks is fundamental to the National Park ... more Knowing the condition of natural resources in national parks is fundamental to the National Park Service's (NPS) mission to manage park resources "unimpaired for the enjoyment of future generations." Park managers are confronted with increasingly complex and challenging issues that require a broad-based understanding of the status and trends of park resources as a basis for making decisions and working with other agencies and the public for the long-term protection of park ecosystems. The National Park Service has initiated a long term ecological monitoring program, known as “Vital Signs Monitoring”, to provide the minimum infrastructure needed to track the overall condition of natural resources in parks and to provide early warning of situations that require intervention (see Figure A). The scientifically sound information obtained through this systems-based monitoring program will have multiple applications for management decision making, park planning, research, edu...
In July 1997, conspicuous white patches of necrotic tissue and bare skeleton began to appear on s... more In July 1997, conspicuous white patches of necrotic tissue and bare skeleton began to appear on scleractinian corals in several bays around St. John, US Virgin Islands. Analysis of diseased coral tissue from five different species confirmed the presence of a Sphingomonas-like bacterium, the pathogen for plague type II. To date, 14 species of hard corals have been affected by plague type II around St. John. This disease was monitored at Haulover and Tektite Reefs at depths of 7-12 meters. The study site at Tektite Reef has > 50% cover by scleractinian corals with 90% of hard corals being composed of Montastraea annularis. Monthly surveys at Tektite Reef from December 1997 to May 2001 documented new incidence of disease (bare white patches of skeleton) every month with associated loss of living coral and 90.5% of all disease patches occurred on M. annularis. The frequency of disease within transects ranged from 3 to 58%, and the area of disease patches ranged from 0.25 to 9000 cm2....
In the northeast Caribbean, doldrum-like conditions combined with elevated water temperatures in ... more In the northeast Caribbean, doldrum-like conditions combined with elevated water temperatures in the summer/fall 2005 created the most severe coral bleaching event ever documented within this region. Video monitoring of 100 randomly chosen, permanent transects at five study sites in the US Virgin Islands revealed over 90% of the scleractinian coral cover showed signs of thermal stress by paling or becoming completely white. Lower water temperatures in October allowed some re-coloring of corals; however, a subsequent unprecedented regional outbreak of coral disease affected all sites. Five known diseases or syndromes were recorded; however, most lesions showed signs similar to white plague. Nineteen scleractinian species were affected by disease, with [90% of the disease-induced lesions occurring on the genus Montastraea. The disease outbreak peaked several months after the onset of bleaching at all sites but did not occur at the same time. The mean number of disease-induced lesions increased 51-fold and the mean area of diseaseassociated mortality increased 13-fold when compared with pre-bleaching disease levels. In the 12 months following the onset of bleaching, coral cover declined at all sites (average loss: 51.5%, range: 42.4-61.8%) reducing the five-site average from 21.4% before bleaching to 10.3% with most mortality caused by white plague disease, not bleaching. Continued losses through October 2007 reduced the average coral cover of the five sites to 8.3% (average 2-year loss: 61.1%, range: 53.0-79.3%). Mean cover by M. annularis (complex) decreased 51%, Colpophyllia natans 78% and Agaricia agaricites 87%. Isolated disease outbreaks have been documented before in the Virgin Islands, but never as widespread or devastating as the one that occurred after the 2005 Caribbean coral-bleaching event. This study provides insight into the effects of continued seawater warming and subsequent coral bleaching events in the Caribbean and highlights the need to understand links between coral bleaching and disease.
Knowing the condition of natural resources in national parks is fundamental to the National Park ... more Knowing the condition of natural resources in national parks is fundamental to the National Park Service's (NPS) mission to manage park resources "unimpaired for the enjoyment of future generations." Park managers are confronted with increasingly complex and challenging issues that require a broad-based understanding of the status and trends of park resources as a basis for making decisions and working with other agencies and the public for the long-term protection of park ecosystems. The National Park Service has initiated a long term ecological monitoring program, known as “Vital Signs Monitoring”, to provide the minimum infrastructure needed to track the overall condition of natural resources in parks and to provide early warning of situations that require intervention (see Figure A). The scientifically sound information obtained through this systems-based monitoring program will have multiple applications for management decision making, park planning, research, edu...
In July 1997, conspicuous white patches of necrotic tissue and bare skeleton began to appear on s... more In July 1997, conspicuous white patches of necrotic tissue and bare skeleton began to appear on scleractinian corals in several bays around St. John, US Virgin Islands. Analysis of diseased coral tissue from five different species confirmed the presence of a Sphingomonas-like bacterium, the pathogen for plague type II. To date, 14 species of hard corals have been affected by plague type II around St. John. This disease was monitored at Haulover and Tektite Reefs at depths of 7-12 meters. The study site at Tektite Reef has > 50% cover by scleractinian corals with 90% of hard corals being composed of Montastraea annularis. Monthly surveys at Tektite Reef from December 1997 to May 2001 documented new incidence of disease (bare white patches of skeleton) every month with associated loss of living coral and 90.5% of all disease patches occurred on M. annularis. The frequency of disease within transects ranged from 3 to 58%, and the area of disease patches ranged from 0.25 to 9000 cm2....
In the northeast Caribbean, doldrum-like conditions combined with elevated water temperatures in ... more In the northeast Caribbean, doldrum-like conditions combined with elevated water temperatures in the summer/fall 2005 created the most severe coral bleaching event ever documented within this region. Video monitoring of 100 randomly chosen, permanent transects at five study sites in the US Virgin Islands revealed over 90% of the scleractinian coral cover showed signs of thermal stress by paling or becoming completely white. Lower water temperatures in October allowed some re-coloring of corals; however, a subsequent unprecedented regional outbreak of coral disease affected all sites. Five known diseases or syndromes were recorded; however, most lesions showed signs similar to white plague. Nineteen scleractinian species were affected by disease, with [90% of the disease-induced lesions occurring on the genus Montastraea. The disease outbreak peaked several months after the onset of bleaching at all sites but did not occur at the same time. The mean number of disease-induced lesions increased 51-fold and the mean area of diseaseassociated mortality increased 13-fold when compared with pre-bleaching disease levels. In the 12 months following the onset of bleaching, coral cover declined at all sites (average loss: 51.5%, range: 42.4-61.8%) reducing the five-site average from 21.4% before bleaching to 10.3% with most mortality caused by white plague disease, not bleaching. Continued losses through October 2007 reduced the average coral cover of the five sites to 8.3% (average 2-year loss: 61.1%, range: 53.0-79.3%). Mean cover by M. annularis (complex) decreased 51%, Colpophyllia natans 78% and Agaricia agaricites 87%. Isolated disease outbreaks have been documented before in the Virgin Islands, but never as widespread or devastating as the one that occurred after the 2005 Caribbean coral-bleaching event. This study provides insight into the effects of continued seawater warming and subsequent coral bleaching events in the Caribbean and highlights the need to understand links between coral bleaching and disease.
Uploads
Papers by R. Waara