Although human nucleoporin Tpr is frequently deregulated in cancer, its roles are poorly understo... more Although human nucleoporin Tpr is frequently deregulated in cancer, its roles are poorly understood. Here we show that Tpr depletion generates transcription-dependent replication stress, DNA breaks, and genomic instability. DNA fiber assays and electron microscopy visualization of replication intermediates show that Tpr deficient cells exhibit slow and asymmetric replication forks under replication stress. Tpr deficiency evokes enhanced levels of DNA-RNA hybrids. Additionally, complementary proteomic strategies identify a network of Tpr-interacting proteins mediating RNA processing, such as MATR3 and SUGP2, and functional experiments confirm that their depletion trigger cellular phenotypes shared with Tpr deficiency. Mechanistic studies reveal the interplay of Tpr with GANP, a component of the TREX-2 complex. The Tpr-GANP interaction is supported by their shared protein level alterations in a cohort of ovarian carcinomas. Our results reveal links between nucleoporins, DNA transcript...
The A-type lamins (lamin A/C), encoded by the LMNA gene, are important structural components of t... more The A-type lamins (lamin A/C), encoded by the LMNA gene, are important structural components of the nuclear lamina. LMNA mutations lead to degenerative disorders known as laminopathies, including the premature aging disease Hutchinson-Gilford progeria syndrome. In addition, altered lamin A/C expression is found in various cancers. Reports indicate that lamin A/C plays a role in DNA double strand break repair, but a role in DNA base excision repair (BER) has not been described. We provide evidence for reduced BER efficiency in lamin A/C-depleted cells (Lmna null MEFs and lamin A/C-knockdown U2OS). The mechanism involves impairment of the APE1 and POLβ BER activities, partly effectuated by associated reduction in poly-ADP-ribose chain formation. Also, Lmna null MEFs displayed reduced expression of several core BER enzymes (PARP1, LIG3 and POLβ). Absence of Lmna led to accumulation of 8-oxoguanine (8-oxoG) lesions, and to an increased frequency of substitution mutations induced by chro...
Acquired resistance to the oncogenic BRAF E600 inhibitor vemurafenib is a major clinical challeng... more Acquired resistance to the oncogenic BRAF E600 inhibitor vemurafenib is a major clinical challenge in the treatment of melanoma. Vemurafenib resistance is poorly understood; however, available evidence indicates that reprogrammed mitochondrial metabolism could contribute to the resistance mechanism. Here we show that synthetic polycations, such as polyethylenimines and poly(Llysine)s, prevent vemurafenib resistance in melanoma cells through induction of mitochondrial bioenergetic crisis. Polycations accumulate to a higher degree in hyperpolarized mitochondria (i.e. mitochondria with greater negative charge) which partly explains greater cellular uptake and mitochondrial accumulation of polycations in melanoma cells compared with epidermal melanocytes. Combined treatment of polycations and vemurafenib diminishes the metabolic flexibility of melanoma cells, making them unable to shift between glycolysis and mitochondrial oxidative phosphorylation according to energy demands. Thus, polycations exert considerable detrimental effects on melanoma cells at concentrations better tolerated by epidermal melanocytes and act synergistically with vemurafenib in effectuating bioenergetic crisis, DNA damage and cell death selectively in melanoma cells. Mechanistic understanding of this synergy could lead to the development of macromolecular and polymer therapeutics with structural attributes that encompass even greater cancer-specific cytotoxicity, and provide strategies for tailor-made combination therapies.
Accurate biomarkers for early diagnosis of Alzheimer's disease (AD) are badly needed. Recent ... more Accurate biomarkers for early diagnosis of Alzheimer's disease (AD) are badly needed. Recent reports suggest that dysfunctional mitochondria and DNA damage are associated with AD development. In this report, we measured various cellular parameters, related to mitochondrial bioenergetics and DNA damage, in peripheral blood mononuclear cells (PBMCs) of AD and control participants, for biomarker discovery. PBMCs were isolated from 53 patients with AD of mild to moderate degree and 30 age-matched healthy controls. Tests were performed on the PBMCs from as many of these participants as possible. We measured glycolysis and mitochondrial respiration fluxes using the Seahorse Bioscience flux analyzer, mitochondrial ROS production using flow cytometry, dNTP levels by way of a DNA polymerization assay, DNA strand breaks using the Fluorometric detection of Alkaline DNA Unwinding (FADU) assay, and APE1 incision activity (in cell lysates) on a DNA substrate containing an AP site (to estimate...
Mitochondrial bioenergetics, mitochondrial reactive oxygen species (ROS) and cellular levels of n... more Mitochondrial bioenergetics, mitochondrial reactive oxygen species (ROS) and cellular levels of nucleotides have been hypothesized as early indicators of Alzheimer's disease (AD). Utilizing relative decline of cognitive ability as a predictor of AD risk, we evaluated the correlation between change of cognitive ability and mitochondrial bioenergetics, ROS and cellular levels of deoxyribonucleotides. Change of cognitive abilities, scored at ages of approximately 20 and 57 was determined for a cohort of 1985 male participants. Mitochondrial bioenergetics, mitochondrial ROS and whole-cell levels of deoxyribonucleotide triphosphates were measured in peripheral blood mononuclear cells (PBMCs) from a total of 103 selected participants displaying the most pronounced relative cognitive decline and relative cognitive improvement. We show that relative cognitive decline is associated with higher PBMC content of deoxythymidine-triphosphate (dTTP) (20%), but not mitochondrial bioenergetics parameters measured in this study or mitochondrial ROS. Levels of dTTP in PBMCs are indicators of relative cognitive change suggesting a role of deoxyribonucleotides in the etiology of AD.
Nutrient depletion triggers a series of adaptive processes as part of the unfolded protein respon... more Nutrient depletion triggers a series of adaptive processes as part of the unfolded protein response or UPR. These processes reduce stress to the endoplasmic reticulum by enhancing its protein folding capacity or ability to promote the degradation of dysfunctional proteins. Failure to restore ER homeostasis causes the activation of lethal pathways. The expression of a dominant negative mutant of C/EBPβ (Δ184-C/EBPβ) alters this balance in chicken embryo fibroblasts (CEF). As a result, CEF display enhanced survival upon prolonged nutrient depletion. Starved Δ184-C/EBPβ-expressing CEF display pronounced features of autophagy characterized by the appearance of large vesicles containing amorphous material, the formation of smaller double-membrane vesicles (autophagosomes) and processing of LC3 and GABARAP. However, there were marked differences in the expression and processing of these proteins. In both normal and Δ184-C/EBPβ expressing CEF, the lipidated form of LC3 (form II) accumulate...
Critical reviews in biochemistry and molecular biology
DNA double-strand breaks are highly toxic DNA lesions that cause genomic instability, if not effi... more DNA double-strand breaks are highly toxic DNA lesions that cause genomic instability, if not efficiently repaired. RecQ helicases are a family of highly conserved proteins that maintain genomic stability through their important roles in several DNA repair pathways, including DNA double-strand break repair. Double-strand breaks can be repaired by homologous recombination (HR) using sister chromatids as templates to facilitate precise DNA repair, or by an HR-independent mechanism known as non-homologous end-joining (NHEJ) (error-prone). NHEJ is a non-templated DNA repair process, in which DNA termini are directly ligated. Canonical NHEJ requires DNA-PKcs and Ku70/80, while alternative NHEJ pathways are DNA-PKcs and Ku70/80 independent. This review discusses the role of RecQ helicases in NHEJ, alternative (or back-up) NHEJ (B-NHEJ) and microhomology-mediated end-joining (MMEJ) in V(D)J recombination, class switch recombination and telomere maintenance.
Low vitality (a component of fatigue) in middle-aged and older adults is an important complaint o... more Low vitality (a component of fatigue) in middle-aged and older adults is an important complaint often identified as a symptom of a disease state or side effect of a treatment. No studies to date have investigated the potential link between dysfunctional mitochondrial ATP production and low vitality. Therefore, we measured a number of cellular parameters related to mitochondrial activity in peripheral blood mononuclear cells (PBMCs) isolated from middle-aged men, and tested for association with vitality. These parameters estimate mitochondrial respiration, reactive oxygen species (ROS) production, and deoxyribonucleotide (dNTP) balance in PBMCs. The population was drawn from the Metropolit cohort of men born in 1953. Vitality level was estimated from the Medical Outcomes Study Short Form 36 (SF-36) vitality scale. We found that vitality score had no association with any of the mitochondrial respiration parameters. However, vitality score was inversely associated with cellular ROS pro...
Embryonic stem cells need to maintain genomic integrity so that they can retain the ability to di... more Embryonic stem cells need to maintain genomic integrity so that they can retain the ability to differentiate into multiple cell types without propagating DNA errors. Previous studies have suggested that mechanisms of genome surveillance, including DNA repair, are superior in mouse embryonic stem cells compared with various differentiated murine cells. Using single-cell gel electrophoresis (comet assay) we found that human embryonic stem cells (BG01, I6) have more efficient repair of different types of DNA damage (generated from H2O2, UV-C, ionizing radiation, or psoralen) than human primary fibroblasts (WI-38, hs27) and, with the exception of UV-C damage, HeLa cells. Microarray gene expression analysis showed that mRNA levels of several DNA repair genes are elevated in human embryonic stem cells compared with their differentiated forms (embryoid bodies). These data suggest that genomic maintenance pathways are enhanced in human embryonic stem cells, relative to differentiated human ...
The CEF-4/9E3 chemokine gene is expressed constitutively in chicken embryo ®broblasts (CEF) trans... more The CEF-4/9E3 chemokine gene is expressed constitutively in chicken embryo ®broblasts (CEF) transformed by the Rous sarcoma virus (RSV). This aberrant induction is controlled at the transcriptional and posttranscriptional levels. Transcriptional activation depends on multiple elements of the CEF-4 promoter composing a Src-responsive-Unit or SRU. The SRU includes a TPA responsive element, a PRDII/kB domain and a CAAT box. In this report, we identify C/EBPb as a component of the transacting factor interacting with the CAAT box of the CEF-4 promoter. In addition, we show that C/ EBPb binds to a second element located in proximity of the TRE. A mutation of this distal CAAT box impaired the activation of the CEF-4 promoter by pp60 v-src indicating that this element is also part of the SRU. Using the RCASBP retroviral vector, we expressed a dominant negative mutant of C/EBPb (designated D184-C/EBPb) in RSV-transformed CEF. D184-C/EBPb decreased the accumulation of the CEF-4 mRNA and activation of the CEF-4 promoter by pp60 v-src. The induction of the Cox-2 gene (CEF-147) was also reduced by D184-C/EBPb. The eect of the dominant negative mutant was observed within 1 h of the activation of a thermolabile pp60 v-src suggesting that C/EBPb is an early target of v-src transformation. The dominant negative mutant did not inhibit the transformation of CEF by RSV and in fact accentuated the transformed cell phenotype. Therefore, the activation of C/EBPb is important for the expression of v-src regulated genes but is not required for the in vitro transformation of CEF by pp60 v-src .
Oxidized bases are common types of DNA modifications. Their accumulation in the genome is linked ... more Oxidized bases are common types of DNA modifications. Their accumulation in the genome is linked to aging and degenerative diseases. These modifications are commonly repaired by the base excision repair (BER) pathway. Oxoguanine DNA glycosylase (OGG1) initiates BER of oxidized purine bases. A small number of protein interactions have been identified for OGG1, while very few appear to have functional consequences. We report here that OGG1 interacts with the recombination protein RAD52 in vitro and in vivo. This interaction has reciprocal functional consequences as OGG1 inhibits RAD52 catalytic activities and RAD52 stimulates OGG1 incision activity, likely increasing its turnover rate. RAD52 colocalizes with OGG1 after oxidative stress to cultured cells, but not after the direct induction of double-strand breaks by ionizing radiation. Human cells depleted of RAD52 via small interfering RNA knockdown, and mouse cells lacking the protein via gene knockout showed increased sensitivity to...
Electron transfer through π-stacked arrays of double-stranded DNA contributes to the redox chemis... more Electron transfer through π-stacked arrays of double-stranded DNA contributes to the redox chemistry of bases, including guanine oxidation and thymine-thymine dimer repair by photolyase. 5-Bromouracil is an attractive photoreactive thymine analogue that can be used to investigate electron transfer in DNA, and is a useful probe for protein-DNA interaction analysis. In the present study using Br U we found that UV irradiation facilitated electron injection from mitochondrial transcription factor A into DNA. We also observed that this electron injection could lead to repair of a thymine-thymine dimer.
The main source of mitochondrial DNA (mtDNA) damage is reactive oxygen species (ROS) generated du... more The main source of mitochondrial DNA (mtDNA) damage is reactive oxygen species (ROS) generated during normal cellular metabolism. The main mtDNA lesions generated by ROS are base modifications, such as the ubiquitous 8-oxoguanine (8-oxoG) lesion; however, base loss and strand breaks may also occur. Many human diseases are associated with mtDNA mutations and thus maintaining mtDNA integrity is critical. All of these lesions are repaired primarily by the base excision repair (BER) pathway. It is now known that mammalian mitochondria have BER, which, similarly to nuclear BER, is catalyzed by DNA glycosylases, AP endonuclease, DNA polymerase (POLγ in mitochondria), and DNA ligase. This article outlines procedures for measuring oxidative damage formation and BER in mitochondria, including isolation of mitochondria from tissues and cells, protocols for measuring BER enzyme activities, gene-specific repair assays, chromatographic techniques, as well as current optimizations for detecting 8-oxoG lesions in cells by immunofluorescence. Throughout the assay descriptions we will include methodological considerations that may help optimize the assays in terms of resolution and repeatability.
Cockayne syndrome (CS) is a devastating autosomal recessive disease characterized by neurodegener... more Cockayne syndrome (CS) is a devastating autosomal recessive disease characterized by neurodegeneration, cachexia, and accelerated aging. 80% of the cases are caused by mutations in the CS complementation group B (CSB) gene known to be involved in DNA repair and transcription. Recent evidence indicates that CSB is present in mitochondria, where it associates with mitochondrial DNA (mtDNA). We report an increase in metabolism in the CSBm/m mouse model and CSB-deficient cells. Mitochondrial content is increased in CSB-deficient cells, whereas autophagy is down-regulated, presumably as a result of defects in the recruitment of P62 and mitochondrial ubiquitination. CSB-deficient cells show increased free radical production and an accumulation of damaged mitochondria. Accordingly, treatment with the autophagic stimulators lithium chloride or rapamycin reverses the bioenergetic phenotype of CSB-deficient cells. Our data imply that CSB acts as an mtDNA damage sensor, inducing mitochondrial ...
Chicken embryo fibroblasts (CEF) express several growth arrest-specific (GAS) gene products in G ... more Chicken embryo fibroblasts (CEF) express several growth arrest-specific (GAS) gene products in G 0. In contact-inhibited cells, the expression of the most abundant of these proteins, the p20K lipocalin, is activated at the transcriptional level by C/EBP. In this report, we describe the role of C/EBP in CEF proliferation. We show that the expression of a dominant negative mutant of C/EBP (designated ⌬184-C/EBP) completely inhibited p20K expression at confluence and stimulated the proliferation of CEF without inducing transformation. Mouse embryo fibroblasts nullizygous for C/EBP had a proliferative advantage over cells with one or two functional copies of this gene. C/EBP inhibition enhanced the expression of the three major components of AP-1 in cycling CEF, namely c-Jun, JunD, and Fra-2, and stimulated AP-1 activity. In contrast, the over-expression of C/EBP caused a dramatic reduction in the levels of AP-1 proteins. Therefore, C/EBP is a negative regulator of AP-1 expression and activity in CEF. The expression of cyclin D1 and cell proliferation were stimulated by the dominant negative mutant of C/EBP but not in the presence of TAM67, a dominant negative mutant of c-Jun and AP-1. CEF over-expressing c-Jun, and to a lesser extent JunD and Fra-2, did not growth arrest at high cell density and did not express p20K. Therefore, AP-1 interfered with the action of C/EBP at high cell density, indicating that these factors play opposing roles in the control of GAS gene expression and CEF proliferation.
Base excision repair (BER) is the most prominent DNA repair pathway in human mitochondria. BER al... more Base excision repair (BER) is the most prominent DNA repair pathway in human mitochondria. BER also results in a temporary generation of AP-sites, single-strand breaks and nucleotide gaps. Thus, incomplete BER can result in the generation of DNA repair intermediates that can disrupt mitochondrial DNA replication and transcription and generate mutations. We carried out BER analysis in highly purified mitochondrial extracts from human cell lines U2OS and HeLa, and mouse brain using a circular DNA substrate containing a lesion at a specific position. We found that DNA ligation is significantly slower than the preceding mitochondrial BER steps. Overexpression of DNA ligase III in mitochondria improved the rate of overall BER, increased cell survival after menadione induced oxidative stress and reduced autophagy following the inhibition of the mitochondrial electron transport chain complex I by rotenone. Our results suggest that the amount of DNA ligase III in mitochondria may be critical for cell survival following prolonged oxidative stress, and demonstrate a functional link between mitochondrial DNA damage and repair, cell survival upon oxidative stress, and removal of dysfunctional mitochondria by autophagy.
Mitochondrial transcription factor A (TFAM) is an essential component of mitochondrial nucleoids.... more Mitochondrial transcription factor A (TFAM) is an essential component of mitochondrial nucleoids. TFAM plays an important role in mitochondrial transcription and replication. TFAM has been previously reported to inhibit nucleotide excision repair (NER) in vitro but NER has not yet been detected in mitochondria, whereas base excision repair (BER) has been comprehensively characterized in these organelles. The BER proteins are associated with the inner membrane in mitochondria and thus with the mitochondrial nucleoid, where TFAM is also situated. However, a function for TFAM in BER has not yet been investigated. This study examines the role of TFAM in BER. In vitro studies with purified recombinant TFAM indicate that it preferentially binds to DNA containing 8-oxoguanines, but not to abasic sites, uracils, or a gap in the sequence. TFAM inhibited the in vitro incision activity of 8-oxoguanine DNA glycosylase (OGG1), uracil-DNA glycosylase (UDG), apurinic endonuclease 1 (APE1), and nucleotide incorporation by DNA polymerase γ (pol γ). On the other hand, a DNA binding-defective TFAM mutant, L58A, showed less inhibition of BER in vitro. Characterization of TFAM knockdown (KD) cells revealed that these lysates had higher 8oxoG incision activity without changes in αOGG1 protein levels, TFAM KD cells had mild resistance to menadione and increased damage accumulation in the mtDNA when compared to the control cells. In addition, we found that the tumor suppressor p53, which has been shown to interact with and alter the DNA binding activity of TFAM, alleviates TFAM-induced inhibition of BER proteins. Together, the results suggest that TFAM modulates BER in mitochondria by virtue of its DNA binding activity and protein interactions.
Although human nucleoporin Tpr is frequently deregulated in cancer, its roles are poorly understo... more Although human nucleoporin Tpr is frequently deregulated in cancer, its roles are poorly understood. Here we show that Tpr depletion generates transcription-dependent replication stress, DNA breaks, and genomic instability. DNA fiber assays and electron microscopy visualization of replication intermediates show that Tpr deficient cells exhibit slow and asymmetric replication forks under replication stress. Tpr deficiency evokes enhanced levels of DNA-RNA hybrids. Additionally, complementary proteomic strategies identify a network of Tpr-interacting proteins mediating RNA processing, such as MATR3 and SUGP2, and functional experiments confirm that their depletion trigger cellular phenotypes shared with Tpr deficiency. Mechanistic studies reveal the interplay of Tpr with GANP, a component of the TREX-2 complex. The Tpr-GANP interaction is supported by their shared protein level alterations in a cohort of ovarian carcinomas. Our results reveal links between nucleoporins, DNA transcript...
The A-type lamins (lamin A/C), encoded by the LMNA gene, are important structural components of t... more The A-type lamins (lamin A/C), encoded by the LMNA gene, are important structural components of the nuclear lamina. LMNA mutations lead to degenerative disorders known as laminopathies, including the premature aging disease Hutchinson-Gilford progeria syndrome. In addition, altered lamin A/C expression is found in various cancers. Reports indicate that lamin A/C plays a role in DNA double strand break repair, but a role in DNA base excision repair (BER) has not been described. We provide evidence for reduced BER efficiency in lamin A/C-depleted cells (Lmna null MEFs and lamin A/C-knockdown U2OS). The mechanism involves impairment of the APE1 and POLβ BER activities, partly effectuated by associated reduction in poly-ADP-ribose chain formation. Also, Lmna null MEFs displayed reduced expression of several core BER enzymes (PARP1, LIG3 and POLβ). Absence of Lmna led to accumulation of 8-oxoguanine (8-oxoG) lesions, and to an increased frequency of substitution mutations induced by chro...
Acquired resistance to the oncogenic BRAF E600 inhibitor vemurafenib is a major clinical challeng... more Acquired resistance to the oncogenic BRAF E600 inhibitor vemurafenib is a major clinical challenge in the treatment of melanoma. Vemurafenib resistance is poorly understood; however, available evidence indicates that reprogrammed mitochondrial metabolism could contribute to the resistance mechanism. Here we show that synthetic polycations, such as polyethylenimines and poly(Llysine)s, prevent vemurafenib resistance in melanoma cells through induction of mitochondrial bioenergetic crisis. Polycations accumulate to a higher degree in hyperpolarized mitochondria (i.e. mitochondria with greater negative charge) which partly explains greater cellular uptake and mitochondrial accumulation of polycations in melanoma cells compared with epidermal melanocytes. Combined treatment of polycations and vemurafenib diminishes the metabolic flexibility of melanoma cells, making them unable to shift between glycolysis and mitochondrial oxidative phosphorylation according to energy demands. Thus, polycations exert considerable detrimental effects on melanoma cells at concentrations better tolerated by epidermal melanocytes and act synergistically with vemurafenib in effectuating bioenergetic crisis, DNA damage and cell death selectively in melanoma cells. Mechanistic understanding of this synergy could lead to the development of macromolecular and polymer therapeutics with structural attributes that encompass even greater cancer-specific cytotoxicity, and provide strategies for tailor-made combination therapies.
Accurate biomarkers for early diagnosis of Alzheimer's disease (AD) are badly needed. Recent ... more Accurate biomarkers for early diagnosis of Alzheimer's disease (AD) are badly needed. Recent reports suggest that dysfunctional mitochondria and DNA damage are associated with AD development. In this report, we measured various cellular parameters, related to mitochondrial bioenergetics and DNA damage, in peripheral blood mononuclear cells (PBMCs) of AD and control participants, for biomarker discovery. PBMCs were isolated from 53 patients with AD of mild to moderate degree and 30 age-matched healthy controls. Tests were performed on the PBMCs from as many of these participants as possible. We measured glycolysis and mitochondrial respiration fluxes using the Seahorse Bioscience flux analyzer, mitochondrial ROS production using flow cytometry, dNTP levels by way of a DNA polymerization assay, DNA strand breaks using the Fluorometric detection of Alkaline DNA Unwinding (FADU) assay, and APE1 incision activity (in cell lysates) on a DNA substrate containing an AP site (to estimate...
Mitochondrial bioenergetics, mitochondrial reactive oxygen species (ROS) and cellular levels of n... more Mitochondrial bioenergetics, mitochondrial reactive oxygen species (ROS) and cellular levels of nucleotides have been hypothesized as early indicators of Alzheimer's disease (AD). Utilizing relative decline of cognitive ability as a predictor of AD risk, we evaluated the correlation between change of cognitive ability and mitochondrial bioenergetics, ROS and cellular levels of deoxyribonucleotides. Change of cognitive abilities, scored at ages of approximately 20 and 57 was determined for a cohort of 1985 male participants. Mitochondrial bioenergetics, mitochondrial ROS and whole-cell levels of deoxyribonucleotide triphosphates were measured in peripheral blood mononuclear cells (PBMCs) from a total of 103 selected participants displaying the most pronounced relative cognitive decline and relative cognitive improvement. We show that relative cognitive decline is associated with higher PBMC content of deoxythymidine-triphosphate (dTTP) (20%), but not mitochondrial bioenergetics parameters measured in this study or mitochondrial ROS. Levels of dTTP in PBMCs are indicators of relative cognitive change suggesting a role of deoxyribonucleotides in the etiology of AD.
Nutrient depletion triggers a series of adaptive processes as part of the unfolded protein respon... more Nutrient depletion triggers a series of adaptive processes as part of the unfolded protein response or UPR. These processes reduce stress to the endoplasmic reticulum by enhancing its protein folding capacity or ability to promote the degradation of dysfunctional proteins. Failure to restore ER homeostasis causes the activation of lethal pathways. The expression of a dominant negative mutant of C/EBPβ (Δ184-C/EBPβ) alters this balance in chicken embryo fibroblasts (CEF). As a result, CEF display enhanced survival upon prolonged nutrient depletion. Starved Δ184-C/EBPβ-expressing CEF display pronounced features of autophagy characterized by the appearance of large vesicles containing amorphous material, the formation of smaller double-membrane vesicles (autophagosomes) and processing of LC3 and GABARAP. However, there were marked differences in the expression and processing of these proteins. In both normal and Δ184-C/EBPβ expressing CEF, the lipidated form of LC3 (form II) accumulate...
Critical reviews in biochemistry and molecular biology
DNA double-strand breaks are highly toxic DNA lesions that cause genomic instability, if not effi... more DNA double-strand breaks are highly toxic DNA lesions that cause genomic instability, if not efficiently repaired. RecQ helicases are a family of highly conserved proteins that maintain genomic stability through their important roles in several DNA repair pathways, including DNA double-strand break repair. Double-strand breaks can be repaired by homologous recombination (HR) using sister chromatids as templates to facilitate precise DNA repair, or by an HR-independent mechanism known as non-homologous end-joining (NHEJ) (error-prone). NHEJ is a non-templated DNA repair process, in which DNA termini are directly ligated. Canonical NHEJ requires DNA-PKcs and Ku70/80, while alternative NHEJ pathways are DNA-PKcs and Ku70/80 independent. This review discusses the role of RecQ helicases in NHEJ, alternative (or back-up) NHEJ (B-NHEJ) and microhomology-mediated end-joining (MMEJ) in V(D)J recombination, class switch recombination and telomere maintenance.
Low vitality (a component of fatigue) in middle-aged and older adults is an important complaint o... more Low vitality (a component of fatigue) in middle-aged and older adults is an important complaint often identified as a symptom of a disease state or side effect of a treatment. No studies to date have investigated the potential link between dysfunctional mitochondrial ATP production and low vitality. Therefore, we measured a number of cellular parameters related to mitochondrial activity in peripheral blood mononuclear cells (PBMCs) isolated from middle-aged men, and tested for association with vitality. These parameters estimate mitochondrial respiration, reactive oxygen species (ROS) production, and deoxyribonucleotide (dNTP) balance in PBMCs. The population was drawn from the Metropolit cohort of men born in 1953. Vitality level was estimated from the Medical Outcomes Study Short Form 36 (SF-36) vitality scale. We found that vitality score had no association with any of the mitochondrial respiration parameters. However, vitality score was inversely associated with cellular ROS pro...
Embryonic stem cells need to maintain genomic integrity so that they can retain the ability to di... more Embryonic stem cells need to maintain genomic integrity so that they can retain the ability to differentiate into multiple cell types without propagating DNA errors. Previous studies have suggested that mechanisms of genome surveillance, including DNA repair, are superior in mouse embryonic stem cells compared with various differentiated murine cells. Using single-cell gel electrophoresis (comet assay) we found that human embryonic stem cells (BG01, I6) have more efficient repair of different types of DNA damage (generated from H2O2, UV-C, ionizing radiation, or psoralen) than human primary fibroblasts (WI-38, hs27) and, with the exception of UV-C damage, HeLa cells. Microarray gene expression analysis showed that mRNA levels of several DNA repair genes are elevated in human embryonic stem cells compared with their differentiated forms (embryoid bodies). These data suggest that genomic maintenance pathways are enhanced in human embryonic stem cells, relative to differentiated human ...
The CEF-4/9E3 chemokine gene is expressed constitutively in chicken embryo ®broblasts (CEF) trans... more The CEF-4/9E3 chemokine gene is expressed constitutively in chicken embryo ®broblasts (CEF) transformed by the Rous sarcoma virus (RSV). This aberrant induction is controlled at the transcriptional and posttranscriptional levels. Transcriptional activation depends on multiple elements of the CEF-4 promoter composing a Src-responsive-Unit or SRU. The SRU includes a TPA responsive element, a PRDII/kB domain and a CAAT box. In this report, we identify C/EBPb as a component of the transacting factor interacting with the CAAT box of the CEF-4 promoter. In addition, we show that C/ EBPb binds to a second element located in proximity of the TRE. A mutation of this distal CAAT box impaired the activation of the CEF-4 promoter by pp60 v-src indicating that this element is also part of the SRU. Using the RCASBP retroviral vector, we expressed a dominant negative mutant of C/EBPb (designated D184-C/EBPb) in RSV-transformed CEF. D184-C/EBPb decreased the accumulation of the CEF-4 mRNA and activation of the CEF-4 promoter by pp60 v-src. The induction of the Cox-2 gene (CEF-147) was also reduced by D184-C/EBPb. The eect of the dominant negative mutant was observed within 1 h of the activation of a thermolabile pp60 v-src suggesting that C/EBPb is an early target of v-src transformation. The dominant negative mutant did not inhibit the transformation of CEF by RSV and in fact accentuated the transformed cell phenotype. Therefore, the activation of C/EBPb is important for the expression of v-src regulated genes but is not required for the in vitro transformation of CEF by pp60 v-src .
Oxidized bases are common types of DNA modifications. Their accumulation in the genome is linked ... more Oxidized bases are common types of DNA modifications. Their accumulation in the genome is linked to aging and degenerative diseases. These modifications are commonly repaired by the base excision repair (BER) pathway. Oxoguanine DNA glycosylase (OGG1) initiates BER of oxidized purine bases. A small number of protein interactions have been identified for OGG1, while very few appear to have functional consequences. We report here that OGG1 interacts with the recombination protein RAD52 in vitro and in vivo. This interaction has reciprocal functional consequences as OGG1 inhibits RAD52 catalytic activities and RAD52 stimulates OGG1 incision activity, likely increasing its turnover rate. RAD52 colocalizes with OGG1 after oxidative stress to cultured cells, but not after the direct induction of double-strand breaks by ionizing radiation. Human cells depleted of RAD52 via small interfering RNA knockdown, and mouse cells lacking the protein via gene knockout showed increased sensitivity to...
Electron transfer through π-stacked arrays of double-stranded DNA contributes to the redox chemis... more Electron transfer through π-stacked arrays of double-stranded DNA contributes to the redox chemistry of bases, including guanine oxidation and thymine-thymine dimer repair by photolyase. 5-Bromouracil is an attractive photoreactive thymine analogue that can be used to investigate electron transfer in DNA, and is a useful probe for protein-DNA interaction analysis. In the present study using Br U we found that UV irradiation facilitated electron injection from mitochondrial transcription factor A into DNA. We also observed that this electron injection could lead to repair of a thymine-thymine dimer.
The main source of mitochondrial DNA (mtDNA) damage is reactive oxygen species (ROS) generated du... more The main source of mitochondrial DNA (mtDNA) damage is reactive oxygen species (ROS) generated during normal cellular metabolism. The main mtDNA lesions generated by ROS are base modifications, such as the ubiquitous 8-oxoguanine (8-oxoG) lesion; however, base loss and strand breaks may also occur. Many human diseases are associated with mtDNA mutations and thus maintaining mtDNA integrity is critical. All of these lesions are repaired primarily by the base excision repair (BER) pathway. It is now known that mammalian mitochondria have BER, which, similarly to nuclear BER, is catalyzed by DNA glycosylases, AP endonuclease, DNA polymerase (POLγ in mitochondria), and DNA ligase. This article outlines procedures for measuring oxidative damage formation and BER in mitochondria, including isolation of mitochondria from tissues and cells, protocols for measuring BER enzyme activities, gene-specific repair assays, chromatographic techniques, as well as current optimizations for detecting 8-oxoG lesions in cells by immunofluorescence. Throughout the assay descriptions we will include methodological considerations that may help optimize the assays in terms of resolution and repeatability.
Cockayne syndrome (CS) is a devastating autosomal recessive disease characterized by neurodegener... more Cockayne syndrome (CS) is a devastating autosomal recessive disease characterized by neurodegeneration, cachexia, and accelerated aging. 80% of the cases are caused by mutations in the CS complementation group B (CSB) gene known to be involved in DNA repair and transcription. Recent evidence indicates that CSB is present in mitochondria, where it associates with mitochondrial DNA (mtDNA). We report an increase in metabolism in the CSBm/m mouse model and CSB-deficient cells. Mitochondrial content is increased in CSB-deficient cells, whereas autophagy is down-regulated, presumably as a result of defects in the recruitment of P62 and mitochondrial ubiquitination. CSB-deficient cells show increased free radical production and an accumulation of damaged mitochondria. Accordingly, treatment with the autophagic stimulators lithium chloride or rapamycin reverses the bioenergetic phenotype of CSB-deficient cells. Our data imply that CSB acts as an mtDNA damage sensor, inducing mitochondrial ...
Chicken embryo fibroblasts (CEF) express several growth arrest-specific (GAS) gene products in G ... more Chicken embryo fibroblasts (CEF) express several growth arrest-specific (GAS) gene products in G 0. In contact-inhibited cells, the expression of the most abundant of these proteins, the p20K lipocalin, is activated at the transcriptional level by C/EBP. In this report, we describe the role of C/EBP in CEF proliferation. We show that the expression of a dominant negative mutant of C/EBP (designated ⌬184-C/EBP) completely inhibited p20K expression at confluence and stimulated the proliferation of CEF without inducing transformation. Mouse embryo fibroblasts nullizygous for C/EBP had a proliferative advantage over cells with one or two functional copies of this gene. C/EBP inhibition enhanced the expression of the three major components of AP-1 in cycling CEF, namely c-Jun, JunD, and Fra-2, and stimulated AP-1 activity. In contrast, the over-expression of C/EBP caused a dramatic reduction in the levels of AP-1 proteins. Therefore, C/EBP is a negative regulator of AP-1 expression and activity in CEF. The expression of cyclin D1 and cell proliferation were stimulated by the dominant negative mutant of C/EBP but not in the presence of TAM67, a dominant negative mutant of c-Jun and AP-1. CEF over-expressing c-Jun, and to a lesser extent JunD and Fra-2, did not growth arrest at high cell density and did not express p20K. Therefore, AP-1 interfered with the action of C/EBP at high cell density, indicating that these factors play opposing roles in the control of GAS gene expression and CEF proliferation.
Base excision repair (BER) is the most prominent DNA repair pathway in human mitochondria. BER al... more Base excision repair (BER) is the most prominent DNA repair pathway in human mitochondria. BER also results in a temporary generation of AP-sites, single-strand breaks and nucleotide gaps. Thus, incomplete BER can result in the generation of DNA repair intermediates that can disrupt mitochondrial DNA replication and transcription and generate mutations. We carried out BER analysis in highly purified mitochondrial extracts from human cell lines U2OS and HeLa, and mouse brain using a circular DNA substrate containing a lesion at a specific position. We found that DNA ligation is significantly slower than the preceding mitochondrial BER steps. Overexpression of DNA ligase III in mitochondria improved the rate of overall BER, increased cell survival after menadione induced oxidative stress and reduced autophagy following the inhibition of the mitochondrial electron transport chain complex I by rotenone. Our results suggest that the amount of DNA ligase III in mitochondria may be critical for cell survival following prolonged oxidative stress, and demonstrate a functional link between mitochondrial DNA damage and repair, cell survival upon oxidative stress, and removal of dysfunctional mitochondria by autophagy.
Mitochondrial transcription factor A (TFAM) is an essential component of mitochondrial nucleoids.... more Mitochondrial transcription factor A (TFAM) is an essential component of mitochondrial nucleoids. TFAM plays an important role in mitochondrial transcription and replication. TFAM has been previously reported to inhibit nucleotide excision repair (NER) in vitro but NER has not yet been detected in mitochondria, whereas base excision repair (BER) has been comprehensively characterized in these organelles. The BER proteins are associated with the inner membrane in mitochondria and thus with the mitochondrial nucleoid, where TFAM is also situated. However, a function for TFAM in BER has not yet been investigated. This study examines the role of TFAM in BER. In vitro studies with purified recombinant TFAM indicate that it preferentially binds to DNA containing 8-oxoguanines, but not to abasic sites, uracils, or a gap in the sequence. TFAM inhibited the in vitro incision activity of 8-oxoguanine DNA glycosylase (OGG1), uracil-DNA glycosylase (UDG), apurinic endonuclease 1 (APE1), and nucleotide incorporation by DNA polymerase γ (pol γ). On the other hand, a DNA binding-defective TFAM mutant, L58A, showed less inhibition of BER in vitro. Characterization of TFAM knockdown (KD) cells revealed that these lysates had higher 8oxoG incision activity without changes in αOGG1 protein levels, TFAM KD cells had mild resistance to menadione and increased damage accumulation in the mtDNA when compared to the control cells. In addition, we found that the tumor suppressor p53, which has been shown to interact with and alter the DNA binding activity of TFAM, alleviates TFAM-induced inhibition of BER proteins. Together, the results suggest that TFAM modulates BER in mitochondria by virtue of its DNA binding activity and protein interactions.
Uploads
Papers by Scott Maynard