2020 IEEE International Conference on Electro Information Technology (EIT), 2020
It is known that 3D-ICs suffer from hot spot temperatures that can reach thousands of degrees, if... more It is known that 3D-ICs suffer from hot spot temperatures that can reach thousands of degrees, if they are not cooled to reasonable operating temperatures. The problem of hot spots is not limited to the high temperatures of the IC; thermal stress can also pose severe problems, even after cooling the chip. This study investigates thermal stress resulting from a 3D-IC hot spot with 20 W power dissipation. The IC is cooled using SiO2 and diamond cooling blocks. The study is performed using three cooling liquids: water, Freon (R22), and Liquid Nitrogen (LN). As expected, the study shows that metal layers on the chip suffer from high thermal stress due to rising the chip temperature to values higher than the room temperature. It is also noticed that the stress becomes more severe, if cooling is done using LN. In fact, the stress exceeded the maximum tensile strength of aluminum, which means failure of the chip. This indicates that cooling 3D-IC may not ensure acceptable operation or reliability. Thermal stress must be investigated at both high and low temperatures to ensure high performance and acceptable reliability.
2020 IEEE International Conference on Electro Information Technology (EIT), 2020
It is known that 3D-ICs suffer from hot spot temperatures that can reach thousands of degrees, if... more It is known that 3D-ICs suffer from hot spot temperatures that can reach thousands of degrees, if they are not cooled to reasonable operating temperatures. The problem of hot spots is not limited to the high temperatures of the IC; thermal stress can also pose severe problems, even after cooling the chip. This study investigates thermal stress resulting from a 3D-IC hot spot with 20 W power dissipation. The IC is cooled using SiO2 and diamond cooling blocks. The study is performed using three cooling liquids: water, Freon (R22), and Liquid Nitrogen (LN). As expected, the study shows that metal layers on the chip suffer from high thermal stress due to rising the chip temperature to values higher than the room temperature. It is also noticed that the stress becomes more severe, if cooling is done using LN. In fact, the stress exceeded the maximum tensile strength of aluminum, which means failure of the chip. This indicates that cooling 3D-IC may not ensure acceptable operation or reliability. Thermal stress must be investigated at both high and low temperatures to ensure high performance and acceptable reliability.
Uploads
Papers by Sakib Islam