Antibody engineering provides an excellent tool for the generation of human immunotherapeutics fo... more Antibody engineering provides an excellent tool for the generation of human immunotherapeutics for the targeted treatment of solid tumours. We have engineered and selected a completely human antibody to epithelial glycoprotein-2 (EGP-2), a transmembrane glycoprotein present on virtually all human simple epithelia and abundantly expressed on a variety of human carcinomas. We chose to use the procedure of “guided selection” to rebuild a high-affinity murine antibody into a human antibody, using two consecutive rounds of variable domain shuffling and phage library selection. As a starting antibody, the murine antibody MOC-31 was used. After the first round of guided selection, where the VH of MOC-31 was combined in Fab format with a human VLCL library, a small panel of human light chains was identified, originating from a segment of the VκIII family, whereas the MOC-31 VL is more homologous to the VκII family. Nevertheless, one of the chimaeric Fabs, C3, displayed an off-rate similar to MOC-31 scFv. Combining the VL of C3 with a human VH library, while retaining the VH CDR3 of MOC-31, clones were selected using human VH genes originating from the rarely used VH7 family. The best clone, 9E, shows over 13 amino acid mutations from the germline sequence, has an off-rate comparable to the original antibody and specifically binds to the “MOC-31“-epitope on EGP-2 in specificity and competition ELISA, FACS analysis and immunohistochemistry. In both VL and VH of antibody 9E, three germline mutations were found creating the MOC-31 homologue residue. Structural modelling of both murine and human antibodies reveals that one of the germline mutations, 53Y in VH CDR2, is likely to be involved in antigen binding. We conclude that, although they may bind the same epitope and have similar binding affinity to the antigen as the original murine antibody, human antibodies derived by guided selection unlike CDR-grafted antibodies, may retain only some of the original key elements of the binding site chemistry. The selected human anti-EGP-2 antibody will be a suitable reagent for tumour targeting.
The development of a number of diVerent solid tumours is associated with over-expression of ErbB1... more The development of a number of diVerent solid tumours is associated with over-expression of ErbB1, or the epidermal growth factor receptor (EGFR), and this over-expression is often correlated with poor prognosis of patients. Therefore, this receptor tyrosine kinase is considered to be an attractive target for antibody-based therapy. Indeed, antibodies to the EGFR have already proven their value for the treatment of several solid tumours, especially in combination with chemotherapeutic treatment regimens. Variable domains of camelid heavy chain-only antibodies (called Nanobodies ™ ) have superior properties compared with classical antibodies in that they are small, very stable, easy to produce in large quantities and easy to re-format into multi-valent or multi-spe-ciWc proteins. Furthermore, they can speciWcally be selected for a desired function by phage antibody display. In this report, we describe the successful selection and the characterisation of antagonistic anti-EGFR Nanobodies. By using a functional selection strategy, Nanobodies that speciWcally competed for EGF binding to the EGFR were isolated from 'immune' phage Nanobody repertoires. The selected antibody fragments were found to eYciently inhibit EGF binding to the EGFR without acting as receptor agonists themselves. In addition, they blocked EGF-mediated signalling and EGF-induced cell proliferation. In an in vivo murine xenograft model, the Nanobodies were eVective in delaying the outgrowth of A431-derived solid tumours. This is the Wrst report describing the successful use of untagged Nanobodies for the in vivo treatment of solid tumours. The results show that functional phage antibody selection, coupled to the rational design of Nanobodies, permits the rapid development of novel anti-cancer antibody-based therapeutics.
Highly potent human antibodies are required to therapeutically neutralize cytokines such as inter... more Highly potent human antibodies are required to therapeutically neutralize cytokines such as interleukin-6 (IL-6) that is involved in many inflammatory diseases and malignancies. Although a number of mutagenesis approaches exist to perform antibody affinity maturation, these may cause antibody instability and production issues. Thus, a robust and easy antibody affinity maturation strategy to increase antibody potency remains highly desirable. By immunizing llama, cloning the 'immune' antibody repertoire and using phage display, we selected a diverse set of IL-6 antagonistic Fabs. Heavy chain shuffling was performed on the Fab with lowest off-rate, resulting in a panel of variants with even lower off-rate. Structural analysis of the Fab:IL-6 complex suggests that the increased affinity was partly due to a serine to tyrosine switch in HCDR2. This translated into neutralizing capacity in an in vivo model of IL-6 induced SAA production. Finally, a novel Fab library was designed, encoding all variations found in the natural repertoire of VH genes identified after heavy chain shuffling. High stringency selections resulted in identification of a Fab with 250-fold increased potency when re-formatted into IgG1. Compared with a heavily engineered anti-IL-6 monoclonal antibody currently in clinical development, this IgG was at least equally potent, showing the engineering process to have had led to a highly potent anti-IL-6 antibody.
Antibodies to tumour-associated antigens are increasingly being used as targeting vehicles for th... more Antibodies to tumour-associated antigens are increasingly being used as targeting vehicles for the visualisation and for therapy of human solid tumours. The epithelial cell adhesion molecule (Ep-CAM) is an antigen that is overexpressed on a variety of human solid tumours and constitutes an attractive target for immunotargeting. We set out to obtain fully human antibodies to this antigen by selecting from a large antibody repertoire displayed on bacteriophages. Two singlechain variable antibody fragments (scFv) were identi®ed that speci®cally bound recombinant antigen in vitro. One of the selected antibodies (VEL-1) cross-reacted with extracellular matrix components in immunohistochemistry of colon carcinoma, whereas the other scFv (VEL-2) speci®cally recognised colon cancer cells. The latter antibody was further characterised with respect to epitope speci®city and kinetics of antigen-binding. It showed no competition with the well-characterised anti Ep-CAM MOC-31 monoclonal antibody and had an o-rate of 5´10 )2 s )1 . To obtain an antibody format more suitable for in vivo tumour targeting and to increase the apparent anity through avidity, the genes of scFv VEL-2 were re-formatted by fusion to a human (c1) hinge region and CH3 domain. This``minibody'' was expressed in Escherichia coli, speci®cally bound the Ep-CAM antigen and showed a 20-fold reduced o-rate in surface plasmon resonance analysis. These results show that phage antibody selection, combined with antibody engineering, may result in fully human antibody mole-cules with promising characteristics for in vivo use in tumour targeting.
Camelid immunoglobulin variable (IGV) regions were found homologous to their human counterparts; ... more Camelid immunoglobulin variable (IGV) regions were found homologous to their human counterparts; however, the germline V repertoires of camelid heavy and light chains are still incomplete and their therapeutic potential is only beginning to be appreciated. We therefore leveraged the publicly available HTG and WGS databases of Lama pacos and Camelus ferus to retrieve the germline repertoire of V genes using human IGV genes as reference. In addition, we amplified IGKV and IGLV genes to uncover the V germline repertoire of Lama glama and sequenced BAC clones covering part of the Lama pacos IGK and IGL loci. Our in silico analysis showed that camelid counterparts of all human IGKV and IGLV families and most IGHV families could be identified, based on canonical structure and sequence homology. Interestingly, this sequence homology seemed largely restricted to the Ig V genes and was far less apparent in other genes: six therapeutically relevant target genes differed significantly from their human orthologs. This contributed to efficient immunization of llamas with the human proteins CD70, MET, interleukin (IL)-1β and IL-6, resulting in large panels of functional antibodies. The in silico predicted human-homologous canonical folds of camelid-derived antibodies were confirmed by X-ray crystallography solving the structure of two selected camelid anti-CD70 and anti-MET antibodies. These antibodies showed identical fold combinations as found in the corresponding human germline V families, yielding binding site structures closely similar to those occurring in human antibodies. In conclusion, our results indicate that active immunization of camelids can be a powerful therapeutic antibody platform.
Over the years, many antibodies have been successfully generated to treat patients with life-thre... more Over the years, many antibodies have been successfully generated to treat patients with life-threatening diseases, most notably cancer. While the first generation of antibodies, originating from mice, caused severe side effects and were relatively inefficient, technological advances have made it possible to obtain fully human antibodies for therapeutic use. 'Heavy-chain only' antibodies have recently been discovered in the blood of camelids. Because of their size, the antigen-binding units of these antibodies comprising only a single Ig fold are called Nanobodies. These antibody fragments have several remarkable features that make them ideal candidates as next-generation cancer therapeutics. Particularly appealing is their ability to simultaneously inhibit various crucial growth factor receptors or their ligands with a single molecule. In addition, they are easy to clone and express on the tip of filamentous phage, which opens the possibility to select for Nanobodies inducin...
The human CD30 receptor is highly overexpressed on the surface of Hodgkin Reed-Sternberg cells an... more The human CD30 receptor is highly overexpressed on the surface of Hodgkin Reed-Sternberg cells and has been shown to be an excellent target for selective immunotherapy using monoclonal antibody-based agents such as immunotoxins. To construct a new recombinant immunotoxin for possible clinical use in patients with Hodgkin's lymphoma, we have chosen the murine anti-CD30 hybridoma Ki-4 to generate a high-affinity Ki-4 single-chain variable fragment (scFv). Hybridoma V-genes were polymerase chain reaction-amplified, assembled, cloned and expressed as a mini-library for display on filamentous phage. Functional Ki-4 scFv were obtained by selection of binding phage on the Hodgkin lymphoma-derived, CD30-expressing cell line L540Cy. The selected recombinant Ki-4 scFv was shown to specifically bind to an overlapping epitope on the CD30 antigen with binding kinetics similar to those of the original antibody. The Ki-4 scFv was subsequently fused to a deletion mutant of Pseudomonas exotoxin ...
The tumour-associated antigen epithelial glycoprotein-2 (EGP-2) is a promising target for detecti... more The tumour-associated antigen epithelial glycoprotein-2 (EGP-2) is a promising target for detection and treatment of a variety of human carcinomas. Antibodies to this antigen have been successfully used in patients for imaging of small-cell lung cancer and for adjuvant treatment of minimal residual disease of colon cancer. We describe here the isolation and complete characterization of high-affinity single-chain variable fragments (scFv) to the EGP-2 antigen. First, the binding kinetics of four murine whole antibodies directed to EGP-2 (17-1A, 323/A3, MOC-31 and MOC-161) were determined using surface plasmon resonance (SPR). The MOC-31 antibody has the lowest apparent off-rate, followed by MOC-161 and 323/A3. The V-genes of the two MOC hybridomas were cloned as scFv in a phage display vector and antigen-binding phage were selected by panning on recombinant antigen. The scFvs compete with the original hybridoma antibodies for binding to antigen and specifically bind to human carcinom...
In recent years, the use of display vectors and in vitro selection technologies has transformed t... more In recent years, the use of display vectors and in vitro selection technologies has transformed the way in which we generate ligands, such as antibodies and peptides, for a given target. Using this technology, we are now able to design repertoires of ligands from scratch and use the power of phage selection to select those ligands having the desired (biological) properties. With phage display, tailor-made antibodies may be synthesized and selected to acquire the desired affinity of binding and specificity for in vitro and in vivo diagnosis, or for immunotherapy of human disease. This review addresses recent progress in the construction of, and selection from phage antibody libraries, together with novel approaches for screening phage antibodies. As the quality of large naïve and synthetic antibody repertoires improves and libraries becomes more generally available, new and exciting applications are pioneered such as the identification of novel antigens using differential selection and the generation of receptor a(nta)gonists. A combination of the design and generation of millions to billions of different ligands, together with phage display for the isolation of binding ligands and with functional assays for identifying (and possibly selecting) bio-active ligands, will open even more challenging applications of this inspiring technology, and provide a powerful tool for drug and target discovery well into the next decade.
Given that overexpression of the epidermal growth factor receptor (EGFR) is found in many types o... more Given that overexpression of the epidermal growth factor receptor (EGFR) is found in many types of human epithelial cancers, noninvasive molecular imaging of this receptor is of great interest. A number of studies have employed monoclonal antibodies as probes; however, their characteristic long half-life in the bloodstream has encouraged the development of smaller probes. In this study, an anti-EGFR nanobody-based probe was developed and tested in comparison with cetuximab for application in optical molecular imaging. To this aim, the anti-EGFR nanobody 7D12 and cetuximab were conjugated to the near-infrared fluorophore IRDye800CW. 7D12-IR allowed the visualization of tumors as early as 30 minutes postinjection, whereas with cetuximab-IR, no signal above background was observed at the tumor site. Quantification of the IR-conjugated proteins in the tumors revealed ≈ 17% of injected dose per gram 2 hours after injection of 7D12-IR, which was significantly higher than the tumor uptake ...
The epidermal growth factor receptor (EGFR) is implicated in human cancers and is the target of s... more The epidermal growth factor receptor (EGFR) is implicated in human cancers and is the target of several classes of therapeutic agents, including antibody-based drugs. Here, we describe X-ray crystal structures of the extracellular region of EGFR in complex with three inhibitory nanobodies, the variable domains of heavy chain only antibodies (VHH). VHH domains, the smallest natural antigen-binding modules, are readily engineered for diagnostic and therapeutic applications. All three VHH domains prevent ligand-induced EGFR activation, but use two distinct mechanisms. 7D12 sterically blocks ligand binding to EGFR in a manner similar to that of cetuximab. EgA1 and 9G8 bind an epitope near the EGFR domain II/III junction, preventing receptor conformational changes required for high-affinity ligand binding and dimerization. This epitope is accessible to the convex VHH paratope but inaccessible to the flatter paratope of monoclonal antibodies. Appreciating the modes of binding and inhibition of these VHH domains will aid in developing them for tumor imaging and/or cancer therapy.
Proceedings of the National Academy of Sciences, 2012
The deregulation of the epidermal growth factor receptor (EGFR) has a significant role in the pro... more The deregulation of the epidermal growth factor receptor (EGFR) has a significant role in the progression of tumors. Despite the development of a number of EGFR-targeting agents that can arrest tumor growth, their success in the clinic is limited in several tumor types, particularly in the highly malignant glioblastoma multiforme (GBM). In this study, we generated and characterized EGFRspecific nanobodies (ENb) and imageable and proapoptotic ENb immunoconjugates released from stem cells (SC) to ultimately develop a unique EGFR-targeted therapy for GBM. We show that ENbs released from SCs specifically localize to tumors, inhibit EGFR signaling resulting in reduced GBM growth and invasiveness in vitro and in vivo in both established and primary GBM cell lines. We also show that ENb primes GBM cells for proapoptotic tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. Furthermore, SC-delivered immunoconjugates of ENb and TRAIL target a wide spectrum of GBM cell types with varying degrees of TRAIL resistance and significantly reduce GBM growth and invasion in both established and primary invasive GBM in mice. This study demonstrates the efficacy of SC-based EGFR targeted therapy in GBMs and provides a unique approach with clinical implications.
The extent to which ligand occupancy and dimerization contribute to erbB1 signaling is controvers... more The extent to which ligand occupancy and dimerization contribute to erbB1 signaling is controversial. To examine this, we utilized two-color Quantum Dot tracking for visualization of erbB1 homodimerization and quantification of the dimer off rate (k off ) on living cells. Kinetic parameters were extracted using a 3-state Hidden Markov Model to identify transition rates between free, co-confined, and dimerized states. We report that dimers composed of 2 ligandbound receptors are long-lived and their k off is independent of kinase activity. By comparison, unliganded dimers have >4-fold faster k off . Transient co-confinement of receptors promotes repeated encounters and enhances dimer formation. Mobility decreases >6-fold when ligandbound receptors dimerize. Blockade of erbB1 kinase activity or disruption of actin networks results in faster diffusion of receptor dimers. These results implicate both signal propagation and the cortical cytoskeleton in reduced mobility of signaling-competent erbB1 dimers.
Antibody engineering provides an excellent tool for the generation of human immunotherapeutics fo... more Antibody engineering provides an excellent tool for the generation of human immunotherapeutics for the targeted treatment of solid tumours. We have engineered and selected a completely human antibody to epithelial glycoprotein-2 (EGP-2), a transmembrane glycoprotein present on virtually all human simple epithelia and abundantly expressed on a variety of human carcinomas. We chose to use the procedure of``guided selection'' to rebuild a high-af®nity murine antibody into a human antibody, using two consecutive rounds of variable domain shuf¯ing and phage library selection. As a starting antibody, the murine antibody MOC-31 was used. After the ®rst round of guided selection, where the V H of MOC-31 was combined in Fab format with a human V L C L library, a small panel of human light chains was identi®ed, originating from a segment of the VkIII family, whereas the MOC-31 V L is more homologous to the VkII family. Nevertheless, one of the chimaeric Fabs, C3, displayed an off-rate similar to MOC-31 scFv. Combining the V L of C3 with a human V H library, while retaining the V H CDR3 of MOC-31, clones were selected using human V H genes originating from the rarely used V H 7 family. The best clone, 9E, shows over 13 amino acid mutations from the germline sequence, has an off-rate comparable to the original antibody and speci®cally binds to thè`M OC-31``-epitope on EGP-2 in speci®city and competition ELISA, FACS analysis and immunohistochemistry. In both V L and V H of antibody 9E, three germline mutations were found creating the MOC-31 homologue residue. Structural modelling of both murine and human antibodies reveals that one of the germline mutations, 53Y in V H CDR2, is likely to be involved in antigen binding. We conclude that, although they may bind the same epitope and have similar binding af®nity to the antigen as the original murine antibody, human antibodies derived by guided selection unlike CDR-grafted antibodies, may retain only some of the original key elements of the binding site chemistry. The selected human anti-EGP-2 antibody will be a suitable reagent for tumour targeting.
Phage antibody display technology offers a powerful tool for the isolation of specific antibodies... more Phage antibody display technology offers a powerful tool for the isolation of specific antibodies to defined target antigens. Most selection strategies described to date have relied on the availability of purified and often recombinant antigen, providing the possibility to perform selections on a well-defined antigen source. However, when the target antigen cannot be Ž . Ž purified e.g., an integral membrane protein , or if the antigen is unknown e.g., when searching for novel markers on cells . or tissues , panning of phage antibody libraries has to be performed on complex antigen sources such as cell surfaces or tissue sections, or even by in vivo selection methods. This provides a series of technical and experimental challenges. One focus of our research is to select antibodies directed to novel cancer-induced antigens expressed by tumours and by the tumour vasculature. To understand the parameters governing selection on complex antigen sources and to assess the efficiency of these phage library selections, we have set up two model selection systems in which both tumour cells and vascular endothelial cells serve as target ''antigen''. We describe a model based on phage antibodies directed to the tumour antigen epithelial glycoprotein-2, to compare phage antibody selections on a range of different antigen sources including purified and recombinant antigen, whole live cells, tissue cryosections and in vivo grown solid tumours. Secondly, we describe a model based on a phage antibody directed against the endothelial cell inducible adhesion molecule E-selectin. We compare selections on cultured cell monolayers with selections on cell suspensions immobilised on columns, to determine which selection approach is most suitable for the identification of novel tumour endothelial cell markers. Our data provide insight into the efficiency and thus potency of different selection strategies and show that there are very large differences in the recovery and enrichment of binding phage between the different methods tested. Our results further demonstrate the feasibility of phage antibody selections on whole, intact cells and show that these may sometimes compare favourably to selections on purified antigen. Selections on endothelial cells immobilised on columns compare favourably with selections on cell-monolayers; the most favourable conditions for both selection procedures are described. The implications of our data 0022-1759r99r$ -see front matter q 1999 Elsevier Science B.V. All rights reserved.
Multivalent recombinant antibody fragments provide high binding avidity and unique specificity to... more Multivalent recombinant antibody fragments provide high binding avidity and unique specificity to a wide range of target antigens and haptens. This review describes the design and expression of diabodies, triabodies and tetrabodies using examples of scFv molecules that target viruses (influenza neuraminidase) and cancer (Ep-CAM; epithelial cell adhesion molecule). We discuss the preferred choice of linker length between V-domains to direct the formation of either diabodies (60 kDa), triabodies (90 kDa) or tetrabodies (120 kDa), each with size, flexibility and valency suited to different applications for in vivo imaging and therapy. The increased binding valency of these scFv multimers results in high avidity (low off-rates). A particular advantage for tumour targeting is that molecules of 60-100 kDa have increased tumour penetration and fast clearance rates compared to the parent Ig (150 kDa). We highlight a number of cancer-targeting scFv multimers that have recently successfully undergone pre-clinical trials for in vivo stability and efficacy. We also review the design of multi-specific Fv modules suited to cross-link two or more different target antigens. These bi-and tri-specific multimers can be formed by association of different scFv molecules and, in the first examples, have been designed as cross-linking reagents for T-cell recruitment into tumours (immunotherapy), viral retargeting (gene therapy) and as red blood cell agglutination reagents (immunodiagnostics).
Antibody engineering provides an excellent tool for the generation of human immunotherapeutics fo... more Antibody engineering provides an excellent tool for the generation of human immunotherapeutics for the targeted treatment of solid tumours. We have engineered and selected a completely human antibody to epithelial glycoprotein-2 (EGP-2), a transmembrane glycoprotein present on virtually all human simple epithelia and abundantly expressed on a variety of human carcinomas. We chose to use the procedure of “guided selection” to rebuild a high-affinity murine antibody into a human antibody, using two consecutive rounds of variable domain shuffling and phage library selection. As a starting antibody, the murine antibody MOC-31 was used. After the first round of guided selection, where the VH of MOC-31 was combined in Fab format with a human VLCL library, a small panel of human light chains was identified, originating from a segment of the VκIII family, whereas the MOC-31 VL is more homologous to the VκII family. Nevertheless, one of the chimaeric Fabs, C3, displayed an off-rate similar to MOC-31 scFv. Combining the VL of C3 with a human VH library, while retaining the VH CDR3 of MOC-31, clones were selected using human VH genes originating from the rarely used VH7 family. The best clone, 9E, shows over 13 amino acid mutations from the germline sequence, has an off-rate comparable to the original antibody and specifically binds to the “MOC-31“-epitope on EGP-2 in specificity and competition ELISA, FACS analysis and immunohistochemistry. In both VL and VH of antibody 9E, three germline mutations were found creating the MOC-31 homologue residue. Structural modelling of both murine and human antibodies reveals that one of the germline mutations, 53Y in VH CDR2, is likely to be involved in antigen binding. We conclude that, although they may bind the same epitope and have similar binding affinity to the antigen as the original murine antibody, human antibodies derived by guided selection unlike CDR-grafted antibodies, may retain only some of the original key elements of the binding site chemistry. The selected human anti-EGP-2 antibody will be a suitable reagent for tumour targeting.
The development of a number of diVerent solid tumours is associated with over-expression of ErbB1... more The development of a number of diVerent solid tumours is associated with over-expression of ErbB1, or the epidermal growth factor receptor (EGFR), and this over-expression is often correlated with poor prognosis of patients. Therefore, this receptor tyrosine kinase is considered to be an attractive target for antibody-based therapy. Indeed, antibodies to the EGFR have already proven their value for the treatment of several solid tumours, especially in combination with chemotherapeutic treatment regimens. Variable domains of camelid heavy chain-only antibodies (called Nanobodies ™ ) have superior properties compared with classical antibodies in that they are small, very stable, easy to produce in large quantities and easy to re-format into multi-valent or multi-spe-ciWc proteins. Furthermore, they can speciWcally be selected for a desired function by phage antibody display. In this report, we describe the successful selection and the characterisation of antagonistic anti-EGFR Nanobodies. By using a functional selection strategy, Nanobodies that speciWcally competed for EGF binding to the EGFR were isolated from 'immune' phage Nanobody repertoires. The selected antibody fragments were found to eYciently inhibit EGF binding to the EGFR without acting as receptor agonists themselves. In addition, they blocked EGF-mediated signalling and EGF-induced cell proliferation. In an in vivo murine xenograft model, the Nanobodies were eVective in delaying the outgrowth of A431-derived solid tumours. This is the Wrst report describing the successful use of untagged Nanobodies for the in vivo treatment of solid tumours. The results show that functional phage antibody selection, coupled to the rational design of Nanobodies, permits the rapid development of novel anti-cancer antibody-based therapeutics.
Highly potent human antibodies are required to therapeutically neutralize cytokines such as inter... more Highly potent human antibodies are required to therapeutically neutralize cytokines such as interleukin-6 (IL-6) that is involved in many inflammatory diseases and malignancies. Although a number of mutagenesis approaches exist to perform antibody affinity maturation, these may cause antibody instability and production issues. Thus, a robust and easy antibody affinity maturation strategy to increase antibody potency remains highly desirable. By immunizing llama, cloning the 'immune' antibody repertoire and using phage display, we selected a diverse set of IL-6 antagonistic Fabs. Heavy chain shuffling was performed on the Fab with lowest off-rate, resulting in a panel of variants with even lower off-rate. Structural analysis of the Fab:IL-6 complex suggests that the increased affinity was partly due to a serine to tyrosine switch in HCDR2. This translated into neutralizing capacity in an in vivo model of IL-6 induced SAA production. Finally, a novel Fab library was designed, encoding all variations found in the natural repertoire of VH genes identified after heavy chain shuffling. High stringency selections resulted in identification of a Fab with 250-fold increased potency when re-formatted into IgG1. Compared with a heavily engineered anti-IL-6 monoclonal antibody currently in clinical development, this IgG was at least equally potent, showing the engineering process to have had led to a highly potent anti-IL-6 antibody.
Antibodies to tumour-associated antigens are increasingly being used as targeting vehicles for th... more Antibodies to tumour-associated antigens are increasingly being used as targeting vehicles for the visualisation and for therapy of human solid tumours. The epithelial cell adhesion molecule (Ep-CAM) is an antigen that is overexpressed on a variety of human solid tumours and constitutes an attractive target for immunotargeting. We set out to obtain fully human antibodies to this antigen by selecting from a large antibody repertoire displayed on bacteriophages. Two singlechain variable antibody fragments (scFv) were identi®ed that speci®cally bound recombinant antigen in vitro. One of the selected antibodies (VEL-1) cross-reacted with extracellular matrix components in immunohistochemistry of colon carcinoma, whereas the other scFv (VEL-2) speci®cally recognised colon cancer cells. The latter antibody was further characterised with respect to epitope speci®city and kinetics of antigen-binding. It showed no competition with the well-characterised anti Ep-CAM MOC-31 monoclonal antibody and had an o-rate of 5´10 )2 s )1 . To obtain an antibody format more suitable for in vivo tumour targeting and to increase the apparent anity through avidity, the genes of scFv VEL-2 were re-formatted by fusion to a human (c1) hinge region and CH3 domain. This``minibody'' was expressed in Escherichia coli, speci®cally bound the Ep-CAM antigen and showed a 20-fold reduced o-rate in surface plasmon resonance analysis. These results show that phage antibody selection, combined with antibody engineering, may result in fully human antibody mole-cules with promising characteristics for in vivo use in tumour targeting.
Camelid immunoglobulin variable (IGV) regions were found homologous to their human counterparts; ... more Camelid immunoglobulin variable (IGV) regions were found homologous to their human counterparts; however, the germline V repertoires of camelid heavy and light chains are still incomplete and their therapeutic potential is only beginning to be appreciated. We therefore leveraged the publicly available HTG and WGS databases of Lama pacos and Camelus ferus to retrieve the germline repertoire of V genes using human IGV genes as reference. In addition, we amplified IGKV and IGLV genes to uncover the V germline repertoire of Lama glama and sequenced BAC clones covering part of the Lama pacos IGK and IGL loci. Our in silico analysis showed that camelid counterparts of all human IGKV and IGLV families and most IGHV families could be identified, based on canonical structure and sequence homology. Interestingly, this sequence homology seemed largely restricted to the Ig V genes and was far less apparent in other genes: six therapeutically relevant target genes differed significantly from their human orthologs. This contributed to efficient immunization of llamas with the human proteins CD70, MET, interleukin (IL)-1β and IL-6, resulting in large panels of functional antibodies. The in silico predicted human-homologous canonical folds of camelid-derived antibodies were confirmed by X-ray crystallography solving the structure of two selected camelid anti-CD70 and anti-MET antibodies. These antibodies showed identical fold combinations as found in the corresponding human germline V families, yielding binding site structures closely similar to those occurring in human antibodies. In conclusion, our results indicate that active immunization of camelids can be a powerful therapeutic antibody platform.
Over the years, many antibodies have been successfully generated to treat patients with life-thre... more Over the years, many antibodies have been successfully generated to treat patients with life-threatening diseases, most notably cancer. While the first generation of antibodies, originating from mice, caused severe side effects and were relatively inefficient, technological advances have made it possible to obtain fully human antibodies for therapeutic use. 'Heavy-chain only' antibodies have recently been discovered in the blood of camelids. Because of their size, the antigen-binding units of these antibodies comprising only a single Ig fold are called Nanobodies. These antibody fragments have several remarkable features that make them ideal candidates as next-generation cancer therapeutics. Particularly appealing is their ability to simultaneously inhibit various crucial growth factor receptors or their ligands with a single molecule. In addition, they are easy to clone and express on the tip of filamentous phage, which opens the possibility to select for Nanobodies inducin...
The human CD30 receptor is highly overexpressed on the surface of Hodgkin Reed-Sternberg cells an... more The human CD30 receptor is highly overexpressed on the surface of Hodgkin Reed-Sternberg cells and has been shown to be an excellent target for selective immunotherapy using monoclonal antibody-based agents such as immunotoxins. To construct a new recombinant immunotoxin for possible clinical use in patients with Hodgkin's lymphoma, we have chosen the murine anti-CD30 hybridoma Ki-4 to generate a high-affinity Ki-4 single-chain variable fragment (scFv). Hybridoma V-genes were polymerase chain reaction-amplified, assembled, cloned and expressed as a mini-library for display on filamentous phage. Functional Ki-4 scFv were obtained by selection of binding phage on the Hodgkin lymphoma-derived, CD30-expressing cell line L540Cy. The selected recombinant Ki-4 scFv was shown to specifically bind to an overlapping epitope on the CD30 antigen with binding kinetics similar to those of the original antibody. The Ki-4 scFv was subsequently fused to a deletion mutant of Pseudomonas exotoxin ...
The tumour-associated antigen epithelial glycoprotein-2 (EGP-2) is a promising target for detecti... more The tumour-associated antigen epithelial glycoprotein-2 (EGP-2) is a promising target for detection and treatment of a variety of human carcinomas. Antibodies to this antigen have been successfully used in patients for imaging of small-cell lung cancer and for adjuvant treatment of minimal residual disease of colon cancer. We describe here the isolation and complete characterization of high-affinity single-chain variable fragments (scFv) to the EGP-2 antigen. First, the binding kinetics of four murine whole antibodies directed to EGP-2 (17-1A, 323/A3, MOC-31 and MOC-161) were determined using surface plasmon resonance (SPR). The MOC-31 antibody has the lowest apparent off-rate, followed by MOC-161 and 323/A3. The V-genes of the two MOC hybridomas were cloned as scFv in a phage display vector and antigen-binding phage were selected by panning on recombinant antigen. The scFvs compete with the original hybridoma antibodies for binding to antigen and specifically bind to human carcinom...
In recent years, the use of display vectors and in vitro selection technologies has transformed t... more In recent years, the use of display vectors and in vitro selection technologies has transformed the way in which we generate ligands, such as antibodies and peptides, for a given target. Using this technology, we are now able to design repertoires of ligands from scratch and use the power of phage selection to select those ligands having the desired (biological) properties. With phage display, tailor-made antibodies may be synthesized and selected to acquire the desired affinity of binding and specificity for in vitro and in vivo diagnosis, or for immunotherapy of human disease. This review addresses recent progress in the construction of, and selection from phage antibody libraries, together with novel approaches for screening phage antibodies. As the quality of large naïve and synthetic antibody repertoires improves and libraries becomes more generally available, new and exciting applications are pioneered such as the identification of novel antigens using differential selection and the generation of receptor a(nta)gonists. A combination of the design and generation of millions to billions of different ligands, together with phage display for the isolation of binding ligands and with functional assays for identifying (and possibly selecting) bio-active ligands, will open even more challenging applications of this inspiring technology, and provide a powerful tool for drug and target discovery well into the next decade.
Given that overexpression of the epidermal growth factor receptor (EGFR) is found in many types o... more Given that overexpression of the epidermal growth factor receptor (EGFR) is found in many types of human epithelial cancers, noninvasive molecular imaging of this receptor is of great interest. A number of studies have employed monoclonal antibodies as probes; however, their characteristic long half-life in the bloodstream has encouraged the development of smaller probes. In this study, an anti-EGFR nanobody-based probe was developed and tested in comparison with cetuximab for application in optical molecular imaging. To this aim, the anti-EGFR nanobody 7D12 and cetuximab were conjugated to the near-infrared fluorophore IRDye800CW. 7D12-IR allowed the visualization of tumors as early as 30 minutes postinjection, whereas with cetuximab-IR, no signal above background was observed at the tumor site. Quantification of the IR-conjugated proteins in the tumors revealed ≈ 17% of injected dose per gram 2 hours after injection of 7D12-IR, which was significantly higher than the tumor uptake ...
The epidermal growth factor receptor (EGFR) is implicated in human cancers and is the target of s... more The epidermal growth factor receptor (EGFR) is implicated in human cancers and is the target of several classes of therapeutic agents, including antibody-based drugs. Here, we describe X-ray crystal structures of the extracellular region of EGFR in complex with three inhibitory nanobodies, the variable domains of heavy chain only antibodies (VHH). VHH domains, the smallest natural antigen-binding modules, are readily engineered for diagnostic and therapeutic applications. All three VHH domains prevent ligand-induced EGFR activation, but use two distinct mechanisms. 7D12 sterically blocks ligand binding to EGFR in a manner similar to that of cetuximab. EgA1 and 9G8 bind an epitope near the EGFR domain II/III junction, preventing receptor conformational changes required for high-affinity ligand binding and dimerization. This epitope is accessible to the convex VHH paratope but inaccessible to the flatter paratope of monoclonal antibodies. Appreciating the modes of binding and inhibition of these VHH domains will aid in developing them for tumor imaging and/or cancer therapy.
Proceedings of the National Academy of Sciences, 2012
The deregulation of the epidermal growth factor receptor (EGFR) has a significant role in the pro... more The deregulation of the epidermal growth factor receptor (EGFR) has a significant role in the progression of tumors. Despite the development of a number of EGFR-targeting agents that can arrest tumor growth, their success in the clinic is limited in several tumor types, particularly in the highly malignant glioblastoma multiforme (GBM). In this study, we generated and characterized EGFRspecific nanobodies (ENb) and imageable and proapoptotic ENb immunoconjugates released from stem cells (SC) to ultimately develop a unique EGFR-targeted therapy for GBM. We show that ENbs released from SCs specifically localize to tumors, inhibit EGFR signaling resulting in reduced GBM growth and invasiveness in vitro and in vivo in both established and primary GBM cell lines. We also show that ENb primes GBM cells for proapoptotic tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. Furthermore, SC-delivered immunoconjugates of ENb and TRAIL target a wide spectrum of GBM cell types with varying degrees of TRAIL resistance and significantly reduce GBM growth and invasion in both established and primary invasive GBM in mice. This study demonstrates the efficacy of SC-based EGFR targeted therapy in GBMs and provides a unique approach with clinical implications.
The extent to which ligand occupancy and dimerization contribute to erbB1 signaling is controvers... more The extent to which ligand occupancy and dimerization contribute to erbB1 signaling is controversial. To examine this, we utilized two-color Quantum Dot tracking for visualization of erbB1 homodimerization and quantification of the dimer off rate (k off ) on living cells. Kinetic parameters were extracted using a 3-state Hidden Markov Model to identify transition rates between free, co-confined, and dimerized states. We report that dimers composed of 2 ligandbound receptors are long-lived and their k off is independent of kinase activity. By comparison, unliganded dimers have >4-fold faster k off . Transient co-confinement of receptors promotes repeated encounters and enhances dimer formation. Mobility decreases >6-fold when ligandbound receptors dimerize. Blockade of erbB1 kinase activity or disruption of actin networks results in faster diffusion of receptor dimers. These results implicate both signal propagation and the cortical cytoskeleton in reduced mobility of signaling-competent erbB1 dimers.
Antibody engineering provides an excellent tool for the generation of human immunotherapeutics fo... more Antibody engineering provides an excellent tool for the generation of human immunotherapeutics for the targeted treatment of solid tumours. We have engineered and selected a completely human antibody to epithelial glycoprotein-2 (EGP-2), a transmembrane glycoprotein present on virtually all human simple epithelia and abundantly expressed on a variety of human carcinomas. We chose to use the procedure of``guided selection'' to rebuild a high-af®nity murine antibody into a human antibody, using two consecutive rounds of variable domain shuf¯ing and phage library selection. As a starting antibody, the murine antibody MOC-31 was used. After the ®rst round of guided selection, where the V H of MOC-31 was combined in Fab format with a human V L C L library, a small panel of human light chains was identi®ed, originating from a segment of the VkIII family, whereas the MOC-31 V L is more homologous to the VkII family. Nevertheless, one of the chimaeric Fabs, C3, displayed an off-rate similar to MOC-31 scFv. Combining the V L of C3 with a human V H library, while retaining the V H CDR3 of MOC-31, clones were selected using human V H genes originating from the rarely used V H 7 family. The best clone, 9E, shows over 13 amino acid mutations from the germline sequence, has an off-rate comparable to the original antibody and speci®cally binds to thè`M OC-31``-epitope on EGP-2 in speci®city and competition ELISA, FACS analysis and immunohistochemistry. In both V L and V H of antibody 9E, three germline mutations were found creating the MOC-31 homologue residue. Structural modelling of both murine and human antibodies reveals that one of the germline mutations, 53Y in V H CDR2, is likely to be involved in antigen binding. We conclude that, although they may bind the same epitope and have similar binding af®nity to the antigen as the original murine antibody, human antibodies derived by guided selection unlike CDR-grafted antibodies, may retain only some of the original key elements of the binding site chemistry. The selected human anti-EGP-2 antibody will be a suitable reagent for tumour targeting.
Phage antibody display technology offers a powerful tool for the isolation of specific antibodies... more Phage antibody display technology offers a powerful tool for the isolation of specific antibodies to defined target antigens. Most selection strategies described to date have relied on the availability of purified and often recombinant antigen, providing the possibility to perform selections on a well-defined antigen source. However, when the target antigen cannot be Ž . Ž purified e.g., an integral membrane protein , or if the antigen is unknown e.g., when searching for novel markers on cells . or tissues , panning of phage antibody libraries has to be performed on complex antigen sources such as cell surfaces or tissue sections, or even by in vivo selection methods. This provides a series of technical and experimental challenges. One focus of our research is to select antibodies directed to novel cancer-induced antigens expressed by tumours and by the tumour vasculature. To understand the parameters governing selection on complex antigen sources and to assess the efficiency of these phage library selections, we have set up two model selection systems in which both tumour cells and vascular endothelial cells serve as target ''antigen''. We describe a model based on phage antibodies directed to the tumour antigen epithelial glycoprotein-2, to compare phage antibody selections on a range of different antigen sources including purified and recombinant antigen, whole live cells, tissue cryosections and in vivo grown solid tumours. Secondly, we describe a model based on a phage antibody directed against the endothelial cell inducible adhesion molecule E-selectin. We compare selections on cultured cell monolayers with selections on cell suspensions immobilised on columns, to determine which selection approach is most suitable for the identification of novel tumour endothelial cell markers. Our data provide insight into the efficiency and thus potency of different selection strategies and show that there are very large differences in the recovery and enrichment of binding phage between the different methods tested. Our results further demonstrate the feasibility of phage antibody selections on whole, intact cells and show that these may sometimes compare favourably to selections on purified antigen. Selections on endothelial cells immobilised on columns compare favourably with selections on cell-monolayers; the most favourable conditions for both selection procedures are described. The implications of our data 0022-1759r99r$ -see front matter q 1999 Elsevier Science B.V. All rights reserved.
Multivalent recombinant antibody fragments provide high binding avidity and unique specificity to... more Multivalent recombinant antibody fragments provide high binding avidity and unique specificity to a wide range of target antigens and haptens. This review describes the design and expression of diabodies, triabodies and tetrabodies using examples of scFv molecules that target viruses (influenza neuraminidase) and cancer (Ep-CAM; epithelial cell adhesion molecule). We discuss the preferred choice of linker length between V-domains to direct the formation of either diabodies (60 kDa), triabodies (90 kDa) or tetrabodies (120 kDa), each with size, flexibility and valency suited to different applications for in vivo imaging and therapy. The increased binding valency of these scFv multimers results in high avidity (low off-rates). A particular advantage for tumour targeting is that molecules of 60-100 kDa have increased tumour penetration and fast clearance rates compared to the parent Ig (150 kDa). We highlight a number of cancer-targeting scFv multimers that have recently successfully undergone pre-clinical trials for in vivo stability and efficacy. We also review the design of multi-specific Fv modules suited to cross-link two or more different target antigens. These bi-and tri-specific multimers can be formed by association of different scFv molecules and, in the first examples, have been designed as cross-linking reagents for T-cell recruitment into tumours (immunotherapy), viral retargeting (gene therapy) and as red blood cell agglutination reagents (immunodiagnostics).
Uploads
Papers by Rob Roovers