Cytogenetic studies involving the family Prochilodontidae have shown that these fish can be chara... more Cytogenetic studies involving the family Prochilodontidae have shown that these fish can be characterized by a constant diploid number and a conserved karyotypic macrostructure. This study focused on comparative physical chromosomal mapping using 18S and 5S rDNA to compare the species Semaprochilodus insignis and S. taeniurus. Our results indicated the conservation of large number of conventional chromosomal markers. The molecular cytogenetic analyses of the location of the 18S rDNA indicated the maintenance of a chromosome pair bearing these sites in both species analyzed, and it appears to be a conserved character among the majority of the species of this family. The stability of the number of 5S ribosomal DNA sites and their chromosomal localization as has been reported for the Prochilodontidae was not, however, confirmed for S. insignis and S. taeniurus, as these species showed multiple specific rDNA 5S sites. As such, and in spite of the fact that a number of studies indicate that the family Prochilodontidae has a conserved karyotypic structure, the utilization of molecular tools that use chromosomal segments as markers revealed that this presumed stability cannot be extended to the genome level for the species S. insignis and S. taeniurus.
The genetic variability of the brown pencilfish Nannostomus eques was studied, based on an analys... more The genetic variability of the brown pencilfish Nannostomus eques was studied, based on an analysis of sequences from the control region (1084 bp) of mitochondrial (mt)DNA in 125 individuals collected from eight tributaries along the upper (Açaituba, Miuá, Jaradi and Arixanã), middle (Demini), and lower (Jacundá, Maguari and Catalão) Rio Negro (Brazil). Phylogenetic inferences using mtDNA data from N. eques revealed two evolutionary units. Genetic distance between them ranged from 5·5 to 8·3% and differed by 8·5-11·8% from the sister species pencilfish Nannostomus unifasciatus. The time of divergence between the two evolutionary units was estimated to be the Middle Pliocene (c. 2·99 million years before present). Population genetic analysis (DNA polymorphism, AMOVA and Mantel test) showed high haplotype diversity (HD, >0·90) in each evolutionary unit, a strong population genetic structure in the Demini River that formed a monophyletic group and a correlation between genetic divergence and geographical distance in only one of these units (evolutionary unit 1). On the basis of molecular data, the rapids and waterfalls near São Gabriel da Cachoeira (Upper Rio Negro) were the main barriers to gene flow within evolutionary unit 1 in some localities. The emergences of the Branco River and the Anavilhanas Archipelago were apparently responsible for the discrepancy in distribution of the two evolutionary units, except at Jacundá, where the evolutionary units were sympatric. In view of the differences between the evolutionary units, N. eques cannot be treated as a single stock in the Rio Negro basin. These results may have important implications for the fishery management of this ornamental fish.
Mitochondrial DNA ( mtDNA) sequences of the marbled hatchetfish Carnegiella strigata, an ornament... more Mitochondrial DNA ( mtDNA) sequences of the marbled hatchetfish Carnegiella strigata, an ornamental fish exported from the Negro River, was examined to determine its genetic diversity and population structure in blackwater rivers (Negro and Uatumã Rivers) in the central Amazon. Analyses of a 646 bp fragment of the ATPase 6/8 mtDNA gene revealed two monophyletic lineages of C. strigata with considerable genetic distance between them (10-12%), suggesting that these lineages should not be considered a single stock. Furthermore, there were strong differences in the geographical distribution of the lineages. These results indicate a past association between drainages of the Negro and Uatumã Rivers. They also suggest that, in the Negro River, its main tributary, the Branco River, may act as a geographical barrier and potentially an ecological barrier between populations of the middle and lower portions of the river.
Comparative cytogenetic analyses of hatchetfishes Carnegiella marthae and Carnegiella strigata (G... more Comparative cytogenetic analyses of hatchetfishes Carnegiella marthae and Carnegiella strigata (Gasteropelecidae) from the Rio Negro basin were performed using conventional Giemsa staining, silver (Ag) -staining and C-banding. The diploid chromosome numbers of both species equaled 2n = 50 but their karyotypes were distinct. We found evidence for sex chromosomes in C. marthae since karyotype of males presented 20 M + 12 SM + 4 ST + 14 A and ZZ ST chromosomes while the females presented 20 M + 12 SM + 4 ST + 14 A and ZW ST chromosomes of distinct size. Conversely, C. strigata presented 4 M + 4 SM + 2 ST + 40 A chromosomes without sex chromosome heteromorphism. Karyotypes of both species had two NOR-bearing SM chromosomes of distinct size indicating the presence of multiple NOR phenotypes. The sex chromosome pair had specific C-banding pattern allowing identification of both Z and W. This heteromorphic system has previously been described for the gasteropelecids.
The possible origins and differentiation of a ZZ/ZW sex chromosome system in Semaprochilodus taen... more The possible origins and differentiation of a ZZ/ZW sex chromosome system in Semaprochilodus taeniurus, the only species of the family Prochilodontidae known to possess heteromorphic sex chromosomes, were examined by conventional (C-banding) and molecular (cross-species hybridization of W-specific WCP, Fluorescence in situ hybridization (FISH) with telomere (TTAGGG)n, and Rex1 probes) cytogenetic protocols. Several segments obtained by W-specific probe were cloned, and the sequences localized on the W chromosome were identified by DNA sequencing and search of nucleotide collections of the NCBI and GIRI using BLAST and CENSOR, respectively. Blocks of constitutive heterochromatin in chromosomes of S. taeniurus were observed in the centromere of all autosomal chromosomes and in the terminal, interstitial, and pericentromeric regions of the W chromosome, which did not demonstrate interstitial telomeric sites with FISH of the telomere probe. The Rex1 probe displayed a compartmentalized distribution pattern in some chromosomes and showed signs of invasion of the pericentromeric region in the W chromosome. Chromosomal painting with the W-specific WCP of S. taeniurus onto its own chromosomes showed complete staining of the W chromosome, centromeric sites, and the ends of the Z chromosome, as well as other autosomes. However, cross-species painting using this WCP on chromosomes of S. insignis, Prochilodus lineatus, and P. nigricans did not reveal a proto-W element, but instead demonstrated scattered positive signals of repetitive DNAs. Identification of the W-specific repetitive sequences showed high similarity to microsatellites and transposable elements. Classes of repetitive DNA identified in the W chromosome suggested that the genetic degeneration of this chromosome in S. taeniurus occurred through accumulation of these repetitive DNAs.
Background: Transposable elements (TEs) have the potential to produce broad changes in the genome... more Background: Transposable elements (TEs) have the potential to produce broad changes in the genomes of their hosts, acting as a type of evolutionary toolbox and generating a collection of new regulatory and coding sequences. Several TE classes have been studied in Neotropical cichlids; however, the information gained from these studies is restricted to the physical chromosome mapping, whereas the genetic diversity of the TEs remains unknown. Therefore, the genomic organization of the non-LTR retrotransposons Rex1, Rex3, and Rex6 in five Amazonian cichlid species was evaluated using physical chromosome mapping and DNA sequencing to provide information about the role of TEs in the evolution of cichlid genomes.
Karyotypic data are presented for two sympatric Corydoras species of the Lagoa Dourada, namely, C... more Karyotypic data are presented for two sympatric Corydoras species of the Lagoa Dourada, namely, C. ehrhadti and C. paleatus, which are found in the upper Tibagi river basin (Ponta Grossa, State of Paraná, Brazil). The same diploid number and karyotypic formula were observed in both species/populations. A great similarity in the constitutive heterochromatin distribution and in the activity of nucleolar organizer regions was also found. The use of in situ hybridization with a fluorescent 18S rDNA probe allowed for the identification of the species/populations through the location of ribosomal sites.
Tandemly repeated sequences are a common feature of vertebrate mitochondrial DNA control regions.... more Tandemly repeated sequences are a common feature of vertebrate mitochondrial DNA control regions. However, questions still remain about their mode of evolution and function. To better understand patterns of variation in length and to explore the existence of previously described domain, we have characterized the control region structure of the Amazonian ornamental fish Nannostomus eques and Nannostomus unifasciatus. The control region ranged from 1121 to 1142 bp in length and could be separated into three domains: the domain associated with the extended terminal associated sequences, the central conserved domain, and the conserved sequence blocks domain. In the first domain, we encountered a sequence repeated 10 times in tandem (variable number tandem repeat (VNTR)) that could adopt an "inverted repetitions" type structural conformation. The results suggest that the VNTR pattern encountered in both N. eques and N. unifasciatus is consistent with the prerequisites of the illegitimate elongation model in which the unequal pairing of the chains near the 5 0 -end of the control region favors the formation of repetitions.
Cytogenetic studies involving the family Prochilodontidae have shown that these fish can be chara... more Cytogenetic studies involving the family Prochilodontidae have shown that these fish can be characterized by a constant diploid number and a conserved karyotypic macrostructure. This study focused on comparative physical chromosomal mapping using 18S and 5S rDNA to compare the species Semaprochilodus insignis and S. taeniurus. Our results indicated the conservation of large number of conventional chromosomal markers. The molecular cytogenetic analyses of the location of the 18S rDNA indicated the maintenance of a chromosome pair bearing these sites in both species analyzed, and it appears to be a conserved character among the majority of the species of this family. The stability of the number of 5S ribosomal DNA sites and their chromosomal localization as has been reported for the Prochilodontidae was not, however, confirmed for S. insignis and S. taeniurus, as these species showed multiple specific rDNA 5S sites. As such, and in spite of the fact that a number of studies indicate that the family Prochilodontidae has a conserved karyotypic structure, the utilization of molecular tools that use chromosomal segments as markers revealed that this presumed stability cannot be extended to the genome level for the species S. insignis and S. taeniurus.
The genetic variability of the brown pencilfish Nannostomus eques was studied, based on an analys... more The genetic variability of the brown pencilfish Nannostomus eques was studied, based on an analysis of sequences from the control region (1084 bp) of mitochondrial (mt)DNA in 125 individuals collected from eight tributaries along the upper (Açaituba, Miuá, Jaradi and Arixanã), middle (Demini), and lower (Jacundá, Maguari and Catalão) Rio Negro (Brazil). Phylogenetic inferences using mtDNA data from N. eques revealed two evolutionary units. Genetic distance between them ranged from 5·5 to 8·3% and differed by 8·5-11·8% from the sister species pencilfish Nannostomus unifasciatus. The time of divergence between the two evolutionary units was estimated to be the Middle Pliocene (c. 2·99 million years before present). Population genetic analysis (DNA polymorphism, AMOVA and Mantel test) showed high haplotype diversity (HD, >0·90) in each evolutionary unit, a strong population genetic structure in the Demini River that formed a monophyletic group and a correlation between genetic divergence and geographical distance in only one of these units (evolutionary unit 1). On the basis of molecular data, the rapids and waterfalls near São Gabriel da Cachoeira (Upper Rio Negro) were the main barriers to gene flow within evolutionary unit 1 in some localities. The emergences of the Branco River and the Anavilhanas Archipelago were apparently responsible for the discrepancy in distribution of the two evolutionary units, except at Jacundá, where the evolutionary units were sympatric. In view of the differences between the evolutionary units, N. eques cannot be treated as a single stock in the Rio Negro basin. These results may have important implications for the fishery management of this ornamental fish.
Mitochondrial DNA ( mtDNA) sequences of the marbled hatchetfish Carnegiella strigata, an ornament... more Mitochondrial DNA ( mtDNA) sequences of the marbled hatchetfish Carnegiella strigata, an ornamental fish exported from the Negro River, was examined to determine its genetic diversity and population structure in blackwater rivers (Negro and Uatumã Rivers) in the central Amazon. Analyses of a 646 bp fragment of the ATPase 6/8 mtDNA gene revealed two monophyletic lineages of C. strigata with considerable genetic distance between them (10-12%), suggesting that these lineages should not be considered a single stock. Furthermore, there were strong differences in the geographical distribution of the lineages. These results indicate a past association between drainages of the Negro and Uatumã Rivers. They also suggest that, in the Negro River, its main tributary, the Branco River, may act as a geographical barrier and potentially an ecological barrier between populations of the middle and lower portions of the river.
Comparative cytogenetic analyses of hatchetfishes Carnegiella marthae and Carnegiella strigata (G... more Comparative cytogenetic analyses of hatchetfishes Carnegiella marthae and Carnegiella strigata (Gasteropelecidae) from the Rio Negro basin were performed using conventional Giemsa staining, silver (Ag) -staining and C-banding. The diploid chromosome numbers of both species equaled 2n = 50 but their karyotypes were distinct. We found evidence for sex chromosomes in C. marthae since karyotype of males presented 20 M + 12 SM + 4 ST + 14 A and ZZ ST chromosomes while the females presented 20 M + 12 SM + 4 ST + 14 A and ZW ST chromosomes of distinct size. Conversely, C. strigata presented 4 M + 4 SM + 2 ST + 40 A chromosomes without sex chromosome heteromorphism. Karyotypes of both species had two NOR-bearing SM chromosomes of distinct size indicating the presence of multiple NOR phenotypes. The sex chromosome pair had specific C-banding pattern allowing identification of both Z and W. This heteromorphic system has previously been described for the gasteropelecids.
The possible origins and differentiation of a ZZ/ZW sex chromosome system in Semaprochilodus taen... more The possible origins and differentiation of a ZZ/ZW sex chromosome system in Semaprochilodus taeniurus, the only species of the family Prochilodontidae known to possess heteromorphic sex chromosomes, were examined by conventional (C-banding) and molecular (cross-species hybridization of W-specific WCP, Fluorescence in situ hybridization (FISH) with telomere (TTAGGG)n, and Rex1 probes) cytogenetic protocols. Several segments obtained by W-specific probe were cloned, and the sequences localized on the W chromosome were identified by DNA sequencing and search of nucleotide collections of the NCBI and GIRI using BLAST and CENSOR, respectively. Blocks of constitutive heterochromatin in chromosomes of S. taeniurus were observed in the centromere of all autosomal chromosomes and in the terminal, interstitial, and pericentromeric regions of the W chromosome, which did not demonstrate interstitial telomeric sites with FISH of the telomere probe. The Rex1 probe displayed a compartmentalized distribution pattern in some chromosomes and showed signs of invasion of the pericentromeric region in the W chromosome. Chromosomal painting with the W-specific WCP of S. taeniurus onto its own chromosomes showed complete staining of the W chromosome, centromeric sites, and the ends of the Z chromosome, as well as other autosomes. However, cross-species painting using this WCP on chromosomes of S. insignis, Prochilodus lineatus, and P. nigricans did not reveal a proto-W element, but instead demonstrated scattered positive signals of repetitive DNAs. Identification of the W-specific repetitive sequences showed high similarity to microsatellites and transposable elements. Classes of repetitive DNA identified in the W chromosome suggested that the genetic degeneration of this chromosome in S. taeniurus occurred through accumulation of these repetitive DNAs.
Background: Transposable elements (TEs) have the potential to produce broad changes in the genome... more Background: Transposable elements (TEs) have the potential to produce broad changes in the genomes of their hosts, acting as a type of evolutionary toolbox and generating a collection of new regulatory and coding sequences. Several TE classes have been studied in Neotropical cichlids; however, the information gained from these studies is restricted to the physical chromosome mapping, whereas the genetic diversity of the TEs remains unknown. Therefore, the genomic organization of the non-LTR retrotransposons Rex1, Rex3, and Rex6 in five Amazonian cichlid species was evaluated using physical chromosome mapping and DNA sequencing to provide information about the role of TEs in the evolution of cichlid genomes.
Karyotypic data are presented for two sympatric Corydoras species of the Lagoa Dourada, namely, C... more Karyotypic data are presented for two sympatric Corydoras species of the Lagoa Dourada, namely, C. ehrhadti and C. paleatus, which are found in the upper Tibagi river basin (Ponta Grossa, State of Paraná, Brazil). The same diploid number and karyotypic formula were observed in both species/populations. A great similarity in the constitutive heterochromatin distribution and in the activity of nucleolar organizer regions was also found. The use of in situ hybridization with a fluorescent 18S rDNA probe allowed for the identification of the species/populations through the location of ribosomal sites.
Tandemly repeated sequences are a common feature of vertebrate mitochondrial DNA control regions.... more Tandemly repeated sequences are a common feature of vertebrate mitochondrial DNA control regions. However, questions still remain about their mode of evolution and function. To better understand patterns of variation in length and to explore the existence of previously described domain, we have characterized the control region structure of the Amazonian ornamental fish Nannostomus eques and Nannostomus unifasciatus. The control region ranged from 1121 to 1142 bp in length and could be separated into three domains: the domain associated with the extended terminal associated sequences, the central conserved domain, and the conserved sequence blocks domain. In the first domain, we encountered a sequence repeated 10 times in tandem (variable number tandem repeat (VNTR)) that could adopt an "inverted repetitions" type structural conformation. The results suggest that the VNTR pattern encountered in both N. eques and N. unifasciatus is consistent with the prerequisites of the illegitimate elongation model in which the unequal pairing of the chains near the 5 0 -end of the control region favors the formation of repetitions.
Uploads
Papers by Maria Terencio