Significant advances were made in the development of quantitative structure-activity relationship... more Significant advances were made in the development of quantitative structure-activity relationships (QSARs) relating molecular structure to aquatic toxicity by three studies over 30 years ago by Ferguson in 1939, Konemann in 1981, and Veith and colleagues in 1983. We revisit the original concepts and data from these studies and review these contributions from the bases of current perspectives on the hypothesized mechanism of baseline narcotic toxicity and the underlying thermodynamic and kinetic aspects. The relationships between LC50, octanol-water partition coefficient, aqueous solubility, chemical activity and chemical volume fraction in lipid phases are outlined including kinetic influences on measured toxicities. These relationships provide a compelling and plausible explanation of the success of these and other QSARs for aquatic toxicity. Suggestions are made for further advances in these QSARs to improve assessments of toxicity by baseline narcotic toxicity and selective modes of action, especially using emerging quantum chemical computational capabilities.
Integrated Environmental Assessment and Management, 2007
It has been asserted that, when screening chemicals for bioaccumulation potential, molecular size... more It has been asserted that, when screening chemicals for bioaccumulation potential, molecular size cutoff criteria (or indicators) can be applied above which no, or limited, bioaccumulation is expected. The suggested molecular size values have increased over time as more measurements have become available. Most of the proposed criteria have been derived from unevaluated fish bioconcentration factor (BCF) data, and less than 5% of existing organic substances have measured BCFs. We critically review the proposed criteria, first by considering other factors that may also contribute to reduced bioaccumulation for larger molecules, namely, reduced bioavailability in the water column, reduced rate of uptake corresponding to reduced diffusion rates, and the effects of biotransformation and growth dilution. An evaluated BCF and bioaccumulation factor (BAF) database for more than 700 substances and dietary uptake efficiency data are compared against proposed cutoff values. We examine errors associated with interpreting BCF data, particularly for developing molecular size criteria of bioaccumulation potential. Reduced bioaccumulation that is often associated with larger molecular size can be explained by factors other than molecular size, and there is evidence of absorption of molecules exceeding the proposed cutoff criteria. The available data do not support strict cutoff criteria, indicating that the proposed values are incorrect. Rather than assessing bioaccumulation using specific chemical properties in isolation, holistic methods that account for competing rates of uptake and elimination in an organism are recommended. An integrated testing strategy is suggested to improve knowledge of the absorption and bioaccumulation of large substances. Integr Environ Assess Manag 2010;6:210-224. ĂŸ 2009 SETAC
Five widely used metrics of bioaccumulation in fish are defined and discussed, namely the octanol... more Five widely used metrics of bioaccumulation in fish are defined and discussed, namely the octanol-water partition coefficient (K OW ), bioconcentration factor (BCF), bioaccumulation factor (BAF), biomagnification factor (BMF), and trophic magnification factor (TMF). Algebraic relationships between these metrics are developed and discussed using conventional expressions for chemical uptake from water and food and first-order losses by respiration, egestion, biotransformation, and growth dilution. Two BCFs may be defined, namely as an equilibrium partition coefficient K FW or as a nonequilibrium BCF K in which egestion losses are included. Bioaccumulation factors are shown to be the product of the BCF K and a novel equilibrium multiplier M containing 2 ratios, namely, the diet-to-water concentration ratio and the ratio of uptake rate constants for respiration and dietary uptake. Biomagnification factors are shown to be proportional to the lipid-normalized ratio of the predator/prey values of BCF K and the ratio of the equilibrium multipliers. Relationships with TMFs are also discussed. The effects of chemical hydrophobicity, biotransformation, and growth are evaluated by applying the relationships to a range of illustrative chemicals of varying K OW in a linear 4-trophic-level food web with typical values for uptake and loss rate constants. The roles of respiratory and dietary intakes are demonstrated, and even slow rates of biotransformation and growth can significantly affect bioaccumulation. The BCF K s and the values of M can be regarded as the fundamental determinants of bioaccumulation and biomagnification in aquatic food webs. Analyzing data from food webs can be enhanced by plotting logarithmic lipid-normalized concentrations or fugacities as a linear function of trophic level to deduce TMFs. Implications for determining bioaccumulation by laboratory tests for regulatory purposes are discussed.
The Risk Assessment IDentification And Ranking (RAIDAR) model is refined to calculate relative hu... more The Risk Assessment IDentification And Ranking (RAIDAR) model is refined to calculate relative human exposures as expressed by total intake, intake fraction (iF), and total body burden (TBB) metrics. The RAIDAR model is applied to three persistent organic pollutants (POPs) and six petrochemicals using four mode-of-entry emission scenarios to evaluate the effect of metabolic biotransformation estimates on human exposure calculations. When biotransformation rates are assumed to be negligible, daily intake and iFs for the nine substances ranged over six orders of magnitude and TBBs ranged over 10 orders of magnitude. Including biotransformation estimates for fish, birds, and mammals reduced substance-specific daily intake and iF by up to 4.5 orders of magnitude and TBB by more than eight orders of magnitude. The RAIDAR iF calculations are compared to the European Union System for the Evaluation of Substances (EUSES) model iF calculations and differences are discussed, especially the treatment of food web bioaccumulation. Model selection and application assumptions result in different rankings of human exposure potential. These results suggest a need to critically consider model selection and to include reliable biotransformation rate estimates when assessing relative human exposure and ranking substances for priority setting. Recommendations for further model evaluations and revisions are discussed.
A unit world model that has the potential to be used for the hazard assessment of both metal ions... more A unit world model that has the potential to be used for the hazard assessment of both metal ions and organic chemicals is described and discussed, with an emphasis on the problems that arise when treating metal ions. It is based on the steady-state equilibrium criterion model that is designed to simulate the fate of organic chemicals in a 100,000-km 2 region and comprises four well-mixed compartments: Air, water, soil, and sediment. To be applicable to metal ions, modifications are required. The single soil and sediment layers should be replaced by two layers to accommodate aerobic and anaerobic conditions. The more complex and variable partitioning of metals resulting from dependence on pH, redox conditions, ionic oxidation state, and presence of sulfide also must be addressed, but preferably in a separate geochemical model, because these factors can result in nonlinearity. For metals, a dynamic as well as a steady-state model is desirable. It is shown that the resulting model can be applied to both organics and metals. Rather than seeking to apply the hazard criterion of persistence to metal ions, the model can be used to deduce a critical loading that results in a defined toxic end point, thus integrating the hazard criteria of persistence, toxicity, and possibly, bioaccumulation. This approach is applied illustratively to naphthalene as a typical organic substance and to four environmentally relevant metal ions. Results are discussed and recommendations made for further development. Specifically, the absence of metal degradation can result in large, steady-state quantities in soils and sediments corresponding to residence times of many centuries. Consequently, the dynamic calculations are more relevant for fate assessments of metals over a period of years, and more focus on the aquatic environment is justified.
It is argued that chemical substances can be meaningfully ranked or classified according to their... more It is argued that chemical substances can be meaningfully ranked or classified according to their persistence (P), bioaccumulation (B), toxicity (T), and potential for long-range transport (LRT) only if these attributes can be shown to be intensive, as distinct from extensive, properties of the substance, i.e., they are independent of quantity of substance. It is shown that P, B, and LRT can be considered intensive or quasi-intensive properties, but toxicity is more problematic. To obtain an intensive metric of toxicity requires selection of one of several possible extensive quantities that define exposure or dose. Ranking of a group of chemicals by toxicity is shown to be very dependent on which quantity is selected. It is suggested that toxicity metrics, such as lethal concentration to 50% of the population (LC50), lethal dose to 50% of the population (LD50), and threshold limit value (TLV) suffer the severe disadvantage of being dependent on the efficiency of delivery of the substance to the site(s) of toxic action in the organism. The use of measured or calculated internal dose is a preferable measure of toxicity since it reduces ambiguities inherent in the other metrics. Also, the primary concern is not the quasi-intensive property of toxicity; rather, it is the risk of toxic effects, an extensive quantity. To adequately assess the risk of toxic effects, both the toxic hazard and the degree of exposure must be characterized. Since exposure cannot be estimated without knowledge of the emission rate of chemicals to the environment, a compelling case can be made that screening to identify priority P, B, T, and LRT substances should be expanded to include quantity released to the environment as an additional factor.
Ionizing chemicals, including pesticides, pharmaceuticals, and personal care products, are care p... more Ionizing chemicals, including pesticides, pharmaceuticals, and personal care products, are care products, are widely used chemicals of commerce and have been detected in the environment in large numbers. These "ionics" are subject to a variety of processes, such as dissociation, ion trap, and electrical interactions with organic matter and biota. Conventional chemodynamic concepts and models designed to treat neutral compounds do not necessarily address these processes. A new system of equations, based on activity and analogous to the fugacity approach, is suggested to describe the fate of organic ionics. The total concentration of all molecule species in a bulk compartment is determined from the product of activity 'a' and a bulk activity capacity 'B'. The concentration ratio between compartments in equilibrium depends on the activity ratio and the capacity ratio. Changes in partitioning due to pH, ionic strength, and the ion trap effect are quantified. The calculation is illustrated for two pharmaceuticals, namely the monovalent acid ibuprofen and the monovalent base trimethoprim, in a multimedia lake system. Trimethoprim is neutral at high pH but ionized at low pH, while ibuprofen exhibits the opposite. The concentration ratios of air and biota to water are shown to depend on pH. The activity approach may be used to describe transport and partitioning of multivalent ionizable organic compounds and to build multimedia fate models.
Environmental Science and Pollution Research, 2001
focus is on describing contaminant fate and transport over the entire continent, including transf... more focus is on describing contaminant fate and transport over the entire continent, including transfer, transport and cycling between air, vegetation, soil, surface water, sediments and near-shore coastal water. The BETR North America model is built on a general framework that links individual regional contaminant fate models to create a model that encompasses a larger, spatially heterogeneous area. It can thus address issues of long-range transport of chemicals between regions within the continent. Parameterization of the model to represent the North American environment is ongoing, and is described in the companion paper in this issue by Woodfine et al. Illustrative calculations to describe the fate and transport of toxaphene in North America are described.
This study describes the development and application of the Farfield Human Exposure (FHX) model. ... more This study describes the development and application of the Farfield Human Exposure (FHX) model. This screening level model brings together information on chemical partitioning, degradation, environmental fate and transport, and food web ...
Significant advances were made in the development of quantitative structure-activity relationship... more Significant advances were made in the development of quantitative structure-activity relationships (QSARs) relating molecular structure to aquatic toxicity by three studies over 30 years ago by Ferguson in 1939, Konemann in 1981, and Veith and colleagues in 1983. We revisit the original concepts and data from these studies and review these contributions from the bases of current perspectives on the hypothesized mechanism of baseline narcotic toxicity and the underlying thermodynamic and kinetic aspects. The relationships between LC50, octanol-water partition coefficient, aqueous solubility, chemical activity and chemical volume fraction in lipid phases are outlined including kinetic influences on measured toxicities. These relationships provide a compelling and plausible explanation of the success of these and other QSARs for aquatic toxicity. Suggestions are made for further advances in these QSARs to improve assessments of toxicity by baseline narcotic toxicity and selective modes of action, especially using emerging quantum chemical computational capabilities.
Integrated Environmental Assessment and Management, 2007
It has been asserted that, when screening chemicals for bioaccumulation potential, molecular size... more It has been asserted that, when screening chemicals for bioaccumulation potential, molecular size cutoff criteria (or indicators) can be applied above which no, or limited, bioaccumulation is expected. The suggested molecular size values have increased over time as more measurements have become available. Most of the proposed criteria have been derived from unevaluated fish bioconcentration factor (BCF) data, and less than 5% of existing organic substances have measured BCFs. We critically review the proposed criteria, first by considering other factors that may also contribute to reduced bioaccumulation for larger molecules, namely, reduced bioavailability in the water column, reduced rate of uptake corresponding to reduced diffusion rates, and the effects of biotransformation and growth dilution. An evaluated BCF and bioaccumulation factor (BAF) database for more than 700 substances and dietary uptake efficiency data are compared against proposed cutoff values. We examine errors associated with interpreting BCF data, particularly for developing molecular size criteria of bioaccumulation potential. Reduced bioaccumulation that is often associated with larger molecular size can be explained by factors other than molecular size, and there is evidence of absorption of molecules exceeding the proposed cutoff criteria. The available data do not support strict cutoff criteria, indicating that the proposed values are incorrect. Rather than assessing bioaccumulation using specific chemical properties in isolation, holistic methods that account for competing rates of uptake and elimination in an organism are recommended. An integrated testing strategy is suggested to improve knowledge of the absorption and bioaccumulation of large substances. Integr Environ Assess Manag 2010;6:210-224. ĂŸ 2009 SETAC
Five widely used metrics of bioaccumulation in fish are defined and discussed, namely the octanol... more Five widely used metrics of bioaccumulation in fish are defined and discussed, namely the octanol-water partition coefficient (K OW ), bioconcentration factor (BCF), bioaccumulation factor (BAF), biomagnification factor (BMF), and trophic magnification factor (TMF). Algebraic relationships between these metrics are developed and discussed using conventional expressions for chemical uptake from water and food and first-order losses by respiration, egestion, biotransformation, and growth dilution. Two BCFs may be defined, namely as an equilibrium partition coefficient K FW or as a nonequilibrium BCF K in which egestion losses are included. Bioaccumulation factors are shown to be the product of the BCF K and a novel equilibrium multiplier M containing 2 ratios, namely, the diet-to-water concentration ratio and the ratio of uptake rate constants for respiration and dietary uptake. Biomagnification factors are shown to be proportional to the lipid-normalized ratio of the predator/prey values of BCF K and the ratio of the equilibrium multipliers. Relationships with TMFs are also discussed. The effects of chemical hydrophobicity, biotransformation, and growth are evaluated by applying the relationships to a range of illustrative chemicals of varying K OW in a linear 4-trophic-level food web with typical values for uptake and loss rate constants. The roles of respiratory and dietary intakes are demonstrated, and even slow rates of biotransformation and growth can significantly affect bioaccumulation. The BCF K s and the values of M can be regarded as the fundamental determinants of bioaccumulation and biomagnification in aquatic food webs. Analyzing data from food webs can be enhanced by plotting logarithmic lipid-normalized concentrations or fugacities as a linear function of trophic level to deduce TMFs. Implications for determining bioaccumulation by laboratory tests for regulatory purposes are discussed.
The Risk Assessment IDentification And Ranking (RAIDAR) model is refined to calculate relative hu... more The Risk Assessment IDentification And Ranking (RAIDAR) model is refined to calculate relative human exposures as expressed by total intake, intake fraction (iF), and total body burden (TBB) metrics. The RAIDAR model is applied to three persistent organic pollutants (POPs) and six petrochemicals using four mode-of-entry emission scenarios to evaluate the effect of metabolic biotransformation estimates on human exposure calculations. When biotransformation rates are assumed to be negligible, daily intake and iFs for the nine substances ranged over six orders of magnitude and TBBs ranged over 10 orders of magnitude. Including biotransformation estimates for fish, birds, and mammals reduced substance-specific daily intake and iF by up to 4.5 orders of magnitude and TBB by more than eight orders of magnitude. The RAIDAR iF calculations are compared to the European Union System for the Evaluation of Substances (EUSES) model iF calculations and differences are discussed, especially the treatment of food web bioaccumulation. Model selection and application assumptions result in different rankings of human exposure potential. These results suggest a need to critically consider model selection and to include reliable biotransformation rate estimates when assessing relative human exposure and ranking substances for priority setting. Recommendations for further model evaluations and revisions are discussed.
A unit world model that has the potential to be used for the hazard assessment of both metal ions... more A unit world model that has the potential to be used for the hazard assessment of both metal ions and organic chemicals is described and discussed, with an emphasis on the problems that arise when treating metal ions. It is based on the steady-state equilibrium criterion model that is designed to simulate the fate of organic chemicals in a 100,000-km 2 region and comprises four well-mixed compartments: Air, water, soil, and sediment. To be applicable to metal ions, modifications are required. The single soil and sediment layers should be replaced by two layers to accommodate aerobic and anaerobic conditions. The more complex and variable partitioning of metals resulting from dependence on pH, redox conditions, ionic oxidation state, and presence of sulfide also must be addressed, but preferably in a separate geochemical model, because these factors can result in nonlinearity. For metals, a dynamic as well as a steady-state model is desirable. It is shown that the resulting model can be applied to both organics and metals. Rather than seeking to apply the hazard criterion of persistence to metal ions, the model can be used to deduce a critical loading that results in a defined toxic end point, thus integrating the hazard criteria of persistence, toxicity, and possibly, bioaccumulation. This approach is applied illustratively to naphthalene as a typical organic substance and to four environmentally relevant metal ions. Results are discussed and recommendations made for further development. Specifically, the absence of metal degradation can result in large, steady-state quantities in soils and sediments corresponding to residence times of many centuries. Consequently, the dynamic calculations are more relevant for fate assessments of metals over a period of years, and more focus on the aquatic environment is justified.
It is argued that chemical substances can be meaningfully ranked or classified according to their... more It is argued that chemical substances can be meaningfully ranked or classified according to their persistence (P), bioaccumulation (B), toxicity (T), and potential for long-range transport (LRT) only if these attributes can be shown to be intensive, as distinct from extensive, properties of the substance, i.e., they are independent of quantity of substance. It is shown that P, B, and LRT can be considered intensive or quasi-intensive properties, but toxicity is more problematic. To obtain an intensive metric of toxicity requires selection of one of several possible extensive quantities that define exposure or dose. Ranking of a group of chemicals by toxicity is shown to be very dependent on which quantity is selected. It is suggested that toxicity metrics, such as lethal concentration to 50% of the population (LC50), lethal dose to 50% of the population (LD50), and threshold limit value (TLV) suffer the severe disadvantage of being dependent on the efficiency of delivery of the substance to the site(s) of toxic action in the organism. The use of measured or calculated internal dose is a preferable measure of toxicity since it reduces ambiguities inherent in the other metrics. Also, the primary concern is not the quasi-intensive property of toxicity; rather, it is the risk of toxic effects, an extensive quantity. To adequately assess the risk of toxic effects, both the toxic hazard and the degree of exposure must be characterized. Since exposure cannot be estimated without knowledge of the emission rate of chemicals to the environment, a compelling case can be made that screening to identify priority P, B, T, and LRT substances should be expanded to include quantity released to the environment as an additional factor.
Ionizing chemicals, including pesticides, pharmaceuticals, and personal care products, are care p... more Ionizing chemicals, including pesticides, pharmaceuticals, and personal care products, are care products, are widely used chemicals of commerce and have been detected in the environment in large numbers. These "ionics" are subject to a variety of processes, such as dissociation, ion trap, and electrical interactions with organic matter and biota. Conventional chemodynamic concepts and models designed to treat neutral compounds do not necessarily address these processes. A new system of equations, based on activity and analogous to the fugacity approach, is suggested to describe the fate of organic ionics. The total concentration of all molecule species in a bulk compartment is determined from the product of activity 'a' and a bulk activity capacity 'B'. The concentration ratio between compartments in equilibrium depends on the activity ratio and the capacity ratio. Changes in partitioning due to pH, ionic strength, and the ion trap effect are quantified. The calculation is illustrated for two pharmaceuticals, namely the monovalent acid ibuprofen and the monovalent base trimethoprim, in a multimedia lake system. Trimethoprim is neutral at high pH but ionized at low pH, while ibuprofen exhibits the opposite. The concentration ratios of air and biota to water are shown to depend on pH. The activity approach may be used to describe transport and partitioning of multivalent ionizable organic compounds and to build multimedia fate models.
Environmental Science and Pollution Research, 2001
focus is on describing contaminant fate and transport over the entire continent, including transf... more focus is on describing contaminant fate and transport over the entire continent, including transfer, transport and cycling between air, vegetation, soil, surface water, sediments and near-shore coastal water. The BETR North America model is built on a general framework that links individual regional contaminant fate models to create a model that encompasses a larger, spatially heterogeneous area. It can thus address issues of long-range transport of chemicals between regions within the continent. Parameterization of the model to represent the North American environment is ongoing, and is described in the companion paper in this issue by Woodfine et al. Illustrative calculations to describe the fate and transport of toxaphene in North America are described.
This study describes the development and application of the Farfield Human Exposure (FHX) model. ... more This study describes the development and application of the Farfield Human Exposure (FHX) model. This screening level model brings together information on chemical partitioning, degradation, environmental fate and transport, and food web ...
Uploads
articles by Don Mackay
Papers by Don Mackay