Given that arbuscular mycorrhizal (AM) fungi are not consistently beneficial to their host plants... more Given that arbuscular mycorrhizal (AM) fungi are not consistently beneficial to their host plants, it is difficult to explain the evolutionary persistence of this relationship. We tested the hypothesis that increasing either fungal or host biodiversity allows an AM fungus to persist on a host where it shows little benefit. We found that growing such a fungus (an isolate of Glomus custos associating with Plantago laceolata) in combination with certain fungi improved its success as measured by mtLSU DNA abundance. Increasing plant species richness facilitated the spread of this fungus as measured by spore density and fungal colonization; the role of host species richness was not as clear when looking at measures of root abundance. These results indicate that diversity in the AM symbiosis, both plant and fungal, can promote the persistence of low-quality fungi. By existing within a complex mycelial network fungal strains that show little growth benefit to their hosts have a better chance of persisting on that same host. This has the potential to promote selection for heterogeneous AM fungal communities on a small spatial scale.
... Dr Michael Darcy Rosalind (Lindy) BOLITHO Factors affecting the resilience of Sudanese adoles... more ... Dr Michael Darcy Rosalind (Lindy) BOLITHO Factors affecting the resilience of Sudanese adolescents in Western Sydney Assoc. ... Dr Michael Darcy Leonie GIBBONS An examination of issues around the support and supervision of kinship carers, with a particular focus on NSW ...
Fungal ecology lags behind in the use of traits (i.e. phenotypic characteristics) to understand e... more Fungal ecology lags behind in the use of traits (i.e. phenotypic characteristics) to understand ecological phenomena. We argue that this is a missed opportunity and that the selection and systematic collection of trait data throughout the fungal kingdom will reap major benefits in ecological and evolutionary understanding of fungi. To develop our argument, we first employ plant trait examples to show the power of trait-based approaches in understanding ecological phenomena such as identifying species allocation resources patterns, inferring community assembly and understanding diversityeecosystem functioning relationships. Second, we discuss ecologically relevant traits in fungi that could be used to answer such ecological phenomena and can be measured on a large proportion of the fungal kingdom. Third, we identify major challenges and opportunities for widespread, coordinated collection and sharing of fungal trait data. The view that we propose has the potential to allow mycologists to contribute considerably more influential studies in the area of fungal ecology and evolution, as has been demonstrated by comparable earlier efforts by plant ecologists. This represents a change of paradigm, from community profiling efforts through massive sequencing tools, to a more mechanistic understanding of fungal ecology.
Given that arbuscular mycorrhizal (AM) fungi are not consistently beneficial to their host plants... more Given that arbuscular mycorrhizal (AM) fungi are not consistently beneficial to their host plants, it is difficult to explain the evolutionary persistence of this relationship. We tested the hypothesis that increasing either fungal or host biodiversity allows an AM fungus to persist on a host where it shows little benefit. We found that growing such a fungus (an isolate of Glomus custos associating with Plantago laceolata) in combination with certain fungi improved its success as measured by mtLSU DNA abundance. Increasing plant species richness facilitated the spread of this fungus as measured by spore density and fungal colonization; the role of host species richness was not as clear when looking at measures of root abundance. These results indicate that diversity in the AM symbiosis, both plant and fungal, can promote the persistence of low-quality fungi. By existing within a complex mycelial network fungal strains that show little growth benefit to their hosts have a better chance of persisting on that same host. This has the potential to promote selection for heterogeneous AM fungal communities on a small spatial scale.
... Dr Michael Darcy Rosalind (Lindy) BOLITHO Factors affecting the resilience of Sudanese adoles... more ... Dr Michael Darcy Rosalind (Lindy) BOLITHO Factors affecting the resilience of Sudanese adolescents in Western Sydney Assoc. ... Dr Michael Darcy Leonie GIBBONS An examination of issues around the support and supervision of kinship carers, with a particular focus on NSW ...
Fungal ecology lags behind in the use of traits (i.e. phenotypic characteristics) to understand e... more Fungal ecology lags behind in the use of traits (i.e. phenotypic characteristics) to understand ecological phenomena. We argue that this is a missed opportunity and that the selection and systematic collection of trait data throughout the fungal kingdom will reap major benefits in ecological and evolutionary understanding of fungi. To develop our argument, we first employ plant trait examples to show the power of trait-based approaches in understanding ecological phenomena such as identifying species allocation resources patterns, inferring community assembly and understanding diversityeecosystem functioning relationships. Second, we discuss ecologically relevant traits in fungi that could be used to answer such ecological phenomena and can be measured on a large proportion of the fungal kingdom. Third, we identify major challenges and opportunities for widespread, coordinated collection and sharing of fungal trait data. The view that we propose has the potential to allow mycologists to contribute considerably more influential studies in the area of fungal ecology and evolution, as has been demonstrated by comparable earlier efforts by plant ecologists. This represents a change of paradigm, from community profiling efforts through massive sequencing tools, to a more mechanistic understanding of fungal ecology.
Uploads
Papers by M. Hart