Proceedings of the National Academy of Sciences of the United States of America, Jan 11, 2017
AMPA-type glutamate receptors (GluAs) mediate fast excitatory transmission in the vertebrate cent... more AMPA-type glutamate receptors (GluAs) mediate fast excitatory transmission in the vertebrate central nervous system (CNS), and their function has been extensively studied in the mature mammalian brain. However, GluA expression begins very early in developing embryos, suggesting that they may also have unidentified developmental roles. Here, we identify developmental roles for GluAs in the ascidian Ciona intestinalis Mammals express Ca(2+)-permeable GluAs (Ca-P GluAs) and Ca(2+)-impermeable GluAs (Ca-I GluAs) by combining subunits derived from four genes. In contrast, ascidians have a single gluA gene. Taking advantage of the simple genomic GluA organization in ascidians, we knocked down (KD) GluAs in Ciona and observed severe impairments in formation of the ocellus, a photoreceptive organ used during the swimming stage, and in resorption of the tail and body axis rotation during metamorphosis to the adult stage. These defects could be rescued by injection of KD-resistant GluAs. GluA...
In physiological and pathological events, extracellular ATP plays an important role by controllin... more In physiological and pathological events, extracellular ATP plays an important role by controlling several types of purinergic receptors and changing cytoskeleton dynamics. To know the process of ATPdependent cytoskeleton remodeling, we focused on cofilin, a key regulator of actin cytoskeleton, and investigated the dynamics of cofilin in PC12 cells through fluorescent protein-labeled cofilin and actin, Ca 2+ imaging, and fluorescence resonance energy transfer (FRET) techniques. As a result, ATP induced intracellular Ca 2+ increase, following cofilin rods' formation. ATP-induced cofilin rods' formation was not observed in cells expressing unphosphorylatable variant of cofilin. A P2X receptor agonist, but not P2Y, induced the formation of cofilin rods, whereas calmodulin and calcineurin inhibitors suppressed it. These results indicate that Ca 2+ influx through P2X receptors induces the formation of cofilin rods via calcineurin-dependent dephosphorylation of cofilin. This pathway might be one candidate to explain the effects of ATP on neuronal development and injury.
Biochemical and Biophysical Research Communications, 2015
In vivo toxicity evaluation using model organisms is an important step for the development of new... more In vivo toxicity evaluation using model organisms is an important step for the development of new drugs. Here, we report that Ciona intestinalis, a chordate invertebrate, is beneficial to drug toxicity evaluation for the following reasons: rapid embryonic and larval development, resemblance to vertebrates, ease of management, low cost, transparent body, and low risk of ethical issues. The dynamic phenotypic change of Ciona larvae during metamorphosis prompted us to examine the effect of cytotoxic drugs on its development by quantifying six toxicity endpoints: degenerated tail size, ampulla length, rotation of body axis, stomach size, heart rate, and body size. As a result, mitochondrial respiratory inhibitors, tubulin polymerization/depolymerization inhibitors, or DNA/RNA synthesis inhibitors showed distinct toxicity profiles against these six endpoints, but drugs with the same targets showed a similar toxicity profile in Ciona. Our results suggest Ciona is an effective animal model for profiling drug toxicity and exploring the mechanisms of drugs with unknown targets.
Specific neuron ablation with laser microbeam has been used in behavioral analysis of Caenorhabdi... more Specific neuron ablation with laser microbeam has been used in behavioral analysis of Caenorhabditis elegans. However, this method is hard to acquire many ablated worms, and is unable to compare behavioral changes just before and after ablation. Here, we developed an ablation method by using genetically encoded photosensitizer protein, KillerRed, which produces reactive oxygen species by green light irradiation. Ablation of AWA sensory neurons abolished the chemotaxis to AWA specific sensitive attractant, diacetyl, and no functional effect on the other sensory neuron, AWC, which senses benzaldehyde. This ablation method can be useful for analyzing neural in situ.
ABSTRACT CIPRO database is an integrated protein database for a tunicate species Ciona intestinal... more ABSTRACT CIPRO database is an integrated protein database for a tunicate species Ciona intestinalis that belongs to the Urochordata. Although the CIPRO database deals with proteomic and transcriptomic data of a single species, the animal is considered unique in the evolutionary tree, representing a possible origin of the vertebrates and is a good model for understanding chordate evolution, including that of humans. Furthermore, C. intestinalis has been one of the favorites of developmental biologists; there exists a huge amount of accumulated knowledge on its development and morphology, in addition to the recent genome sequence and gene expression data. The CIPRO database is aimed at not only collecting published data, but also presenting unique information, including the unpublished transcriptomic and proteomic data and human curated annotation, for the use by researchers in broad research fields of biology and bioinformatics.
Cyclic GMP (cGMP) regulates many physiological processes by cooperating with the other signaling ... more Cyclic GMP (cGMP) regulates many physiological processes by cooperating with the other signaling molecules such as cyclic AMP (cAMP) and Ca 2+. Genetically encoded sensors for cGMP have been developed based on fluorescence resonance energy transfer (FRET) between fluorescent proteins. However, to analyze the dynamic relationship among these second messengers, combined use of existing sensors in a single cell is inadequate because of the significant spectral overlaps. A single wavelength indicator is an effective alternative to avoid this problem, but color variants of a single fluorescent protein-based biosensor are limited. In this study, to construct a new color fluorescent sensor, we converted the FRET-based sensor into a single wavelength indicator using a dark FRET acceptor. We developed a blue fluorescent cGMP biosensor, which is spectrally compatible with a FRET-based cAMP sensor using cyan and yellow fluorescent proteins (CFP/YFP). We cotransfected them and loaded a red fluorescent probe for Ca 2+ into cells, and accomplished triple-parameter fluorescence imaging of these cyclic nucleotides and Ca 2+ , confirming the applicability of this combination to individually monitor their dynamics in a single cell. This blue fluorescent sensor and the approach using this FRET pair would be useful for multiparameter fluorescence imaging to understand complex signal transduction networks.
To examine chromatophore control by FMRFamide-related peptide (FaRP), we investigated the pharmac... more To examine chromatophore control by FMRFamide-related peptide (FaRP), we investigated the pharmacological effect of FMRFamide on the chromatophores and the FMRFamide-immunoreactivity of nerves surrounding the muscles in the coastal squid, Sepioteuthis lessoniana. Applications of FMRFamide elicited expansion of black chromatophores and retraction of yellow chromatophores in the adult squid. FMRFamide-immunoreactive terminals were distributed along black chromatophore muscles but were not observed around the yellow ones. This means that FMRFamide functions differently for each of the two types of chromatophores in the adult squid. Moreover, the pharmacological effect of FMRFamide on the black chromatophores differed between adults and hatchlings; application of FMRFamide retracted black chromatophores in hatchlings but not in adults. These results indicate that certain squid species have an FaRP system for controlling the chromatophores in their skin and that the system changes during development.
Tachykinins (TKs) and their receptors have been shown to be expressed in the mammalian ovary. How... more Tachykinins (TKs) and their receptors have been shown to be expressed in the mammalian ovary. However, the biological roles of ovarian TKs have yet to be verified. Ci-TK-I and Ci-TK-R, characterized from the protochordate (ascidian), Ciona intestinalis, are prototypes of vertebrate TKs and their receptors. In the present study, we show a novel biological function of TKs as an inducible factor for oocyte growth using C. intestinalis as a model organism. Immunostaining demonstrated the specific expression of Ci-TK-R in test cells residing in oocytes at the vitellogenic stage. DNA microarray and realtime PCR revealed that Ci-TK-I induced gene expression of several proteases, including cathepsin D, chymotrypsin, and carboxy-peptidase B1, in the ovary. The enzymatic activities of these proteases in the ovary were also shown to be enhanced by Ci-TK-I. Of particular significance is that the treatment of Ciona oocytes with Ci-TK-I resulted in progression of growth from the vitellogenic stage to the post-vitellogenic stage. The Ci-TK-I-induced oocyte growth was blocked by a TK antagonist or by protease inhibitors. These results led to the conclusion that Ci-TK-I enhances growth of the vitellogenic oocytes via up-regulation of gene expression and enzymatic activities of the proteases. This is the first clarification of the biological roles of TKs in the ovary and the underlying essential molecular mechanism. Furthermore, considering the phylogenetic position of ascidians as basal chordates, we suggest that the novel TK-regulated oocyte growth is an "evolutionary origin" of the tachykininergic functions in the ovary. (Endocrinology 149: 4346-4356, 2008
... Kohji Hotta a , 1 , Hiroki Takahashi b , 1 , Tomomi Asakura a , Banjo Saitoh a , Naohito Taka... more ... Kohji Hotta a , 1 , Hiroki Takahashi b , 1 , Tomomi Asakura a , Banjo Saitoh a , Naohito Takatori a , Yutaka Satou a and Nori ... C. Queva, PJ Koskinen, E. Steingrimsson, DE Ayer, NG Copeland, NA Jenkins and RN Eisenman, Mad3 and Mad4: Novel Max-interacting transcriptional ...
All chordates, including urochordates such as tunicates, develop through embryogenesis. The chord... more All chordates, including urochordates such as tunicates, develop through embryogenesis. The chordate larvae of colonial tunicates metamorphose to lose all chordate structures such as notochord, neural tube, segmented musculature, and then develop by asexual reproduction [blastogenesis], whereby stem cells form tissues and organs. These two developmental pathways establish the same body axis, morphogenetic patterning and organ formation. It is unknown if this convergent morphology implies convergent cellular and molecular mechanisms, and whether the stem cells that mediate these processes differ. Using the colonial tunicate Botryllus schlosseri, we combined transcriptome sequencing and multiple microscopy techniques to study the molecular and morphological signatures of cells at each developmental stage of embryogenesis and blastogenesis. This revealed that the molecular programs are distinct, but the blastogenic tissue-specific stem cells and embryonic precursor populations share si...
Ontologies provide an important resource to integrate information. For developmental biology and ... more Ontologies provide an important resource to integrate information. For developmental biology and comparative anatomy studies, ontologies of a species are used to formalize and annotate data that are related to anatomical structures, their lineage and timing of development. Here, we have constructed the first ontology for anatomy and asexual development (blastogenesis) of a bilaterian, the colonial tunicate Botryllus schlosseri. Tunicates, like Botryllus schlosseri, are non-vertebrates and the only chordate taxon species that reproduce both sexually and asexually. Their tadpole larval stage possesses structures characteristic of all chordates, i.e. a notochord, a dorsal neural tube, and gill slits. Larvae settle and metamorphose into individuals that are either solitary or colonial. The latter reproduce both sexually and asexually and these two reproductive modes lead to essentially the same adult body plan. The Botryllus schlosseri Ontology of Development and Anatomy (BODA) will facilitate the comparison between both types of development. BODA uses the rules defined by the Open Biomedical Ontologies Foundry. It is based on studies that investigate the anatomy, blastogenesis and regeneration of this organism. BODA features allow the users to easily search and identify anatomical structures in the colony, to define the developmental stage, and to follow the morphogenetic events of a tissue and/or organ of interest throughout asexual development. We invite the scientific community to use this resource as a reference for the anatomy and developmental ontology of B. schlosseri and encourage recommendations for updates and improvements.
Proceedings of the National Academy of Sciences of the United States of America, Jan 11, 2017
AMPA-type glutamate receptors (GluAs) mediate fast excitatory transmission in the vertebrate cent... more AMPA-type glutamate receptors (GluAs) mediate fast excitatory transmission in the vertebrate central nervous system (CNS), and their function has been extensively studied in the mature mammalian brain. However, GluA expression begins very early in developing embryos, suggesting that they may also have unidentified developmental roles. Here, we identify developmental roles for GluAs in the ascidian Ciona intestinalis Mammals express Ca(2+)-permeable GluAs (Ca-P GluAs) and Ca(2+)-impermeable GluAs (Ca-I GluAs) by combining subunits derived from four genes. In contrast, ascidians have a single gluA gene. Taking advantage of the simple genomic GluA organization in ascidians, we knocked down (KD) GluAs in Ciona and observed severe impairments in formation of the ocellus, a photoreceptive organ used during the swimming stage, and in resorption of the tail and body axis rotation during metamorphosis to the adult stage. These defects could be rescued by injection of KD-resistant GluAs. GluA...
In physiological and pathological events, extracellular ATP plays an important role by controllin... more In physiological and pathological events, extracellular ATP plays an important role by controlling several types of purinergic receptors and changing cytoskeleton dynamics. To know the process of ATPdependent cytoskeleton remodeling, we focused on cofilin, a key regulator of actin cytoskeleton, and investigated the dynamics of cofilin in PC12 cells through fluorescent protein-labeled cofilin and actin, Ca 2+ imaging, and fluorescence resonance energy transfer (FRET) techniques. As a result, ATP induced intracellular Ca 2+ increase, following cofilin rods' formation. ATP-induced cofilin rods' formation was not observed in cells expressing unphosphorylatable variant of cofilin. A P2X receptor agonist, but not P2Y, induced the formation of cofilin rods, whereas calmodulin and calcineurin inhibitors suppressed it. These results indicate that Ca 2+ influx through P2X receptors induces the formation of cofilin rods via calcineurin-dependent dephosphorylation of cofilin. This pathway might be one candidate to explain the effects of ATP on neuronal development and injury.
Biochemical and Biophysical Research Communications, 2015
In vivo toxicity evaluation using model organisms is an important step for the development of new... more In vivo toxicity evaluation using model organisms is an important step for the development of new drugs. Here, we report that Ciona intestinalis, a chordate invertebrate, is beneficial to drug toxicity evaluation for the following reasons: rapid embryonic and larval development, resemblance to vertebrates, ease of management, low cost, transparent body, and low risk of ethical issues. The dynamic phenotypic change of Ciona larvae during metamorphosis prompted us to examine the effect of cytotoxic drugs on its development by quantifying six toxicity endpoints: degenerated tail size, ampulla length, rotation of body axis, stomach size, heart rate, and body size. As a result, mitochondrial respiratory inhibitors, tubulin polymerization/depolymerization inhibitors, or DNA/RNA synthesis inhibitors showed distinct toxicity profiles against these six endpoints, but drugs with the same targets showed a similar toxicity profile in Ciona. Our results suggest Ciona is an effective animal model for profiling drug toxicity and exploring the mechanisms of drugs with unknown targets.
Specific neuron ablation with laser microbeam has been used in behavioral analysis of Caenorhabdi... more Specific neuron ablation with laser microbeam has been used in behavioral analysis of Caenorhabditis elegans. However, this method is hard to acquire many ablated worms, and is unable to compare behavioral changes just before and after ablation. Here, we developed an ablation method by using genetically encoded photosensitizer protein, KillerRed, which produces reactive oxygen species by green light irradiation. Ablation of AWA sensory neurons abolished the chemotaxis to AWA specific sensitive attractant, diacetyl, and no functional effect on the other sensory neuron, AWC, which senses benzaldehyde. This ablation method can be useful for analyzing neural in situ.
ABSTRACT CIPRO database is an integrated protein database for a tunicate species Ciona intestinal... more ABSTRACT CIPRO database is an integrated protein database for a tunicate species Ciona intestinalis that belongs to the Urochordata. Although the CIPRO database deals with proteomic and transcriptomic data of a single species, the animal is considered unique in the evolutionary tree, representing a possible origin of the vertebrates and is a good model for understanding chordate evolution, including that of humans. Furthermore, C. intestinalis has been one of the favorites of developmental biologists; there exists a huge amount of accumulated knowledge on its development and morphology, in addition to the recent genome sequence and gene expression data. The CIPRO database is aimed at not only collecting published data, but also presenting unique information, including the unpublished transcriptomic and proteomic data and human curated annotation, for the use by researchers in broad research fields of biology and bioinformatics.
Cyclic GMP (cGMP) regulates many physiological processes by cooperating with the other signaling ... more Cyclic GMP (cGMP) regulates many physiological processes by cooperating with the other signaling molecules such as cyclic AMP (cAMP) and Ca 2+. Genetically encoded sensors for cGMP have been developed based on fluorescence resonance energy transfer (FRET) between fluorescent proteins. However, to analyze the dynamic relationship among these second messengers, combined use of existing sensors in a single cell is inadequate because of the significant spectral overlaps. A single wavelength indicator is an effective alternative to avoid this problem, but color variants of a single fluorescent protein-based biosensor are limited. In this study, to construct a new color fluorescent sensor, we converted the FRET-based sensor into a single wavelength indicator using a dark FRET acceptor. We developed a blue fluorescent cGMP biosensor, which is spectrally compatible with a FRET-based cAMP sensor using cyan and yellow fluorescent proteins (CFP/YFP). We cotransfected them and loaded a red fluorescent probe for Ca 2+ into cells, and accomplished triple-parameter fluorescence imaging of these cyclic nucleotides and Ca 2+ , confirming the applicability of this combination to individually monitor their dynamics in a single cell. This blue fluorescent sensor and the approach using this FRET pair would be useful for multiparameter fluorescence imaging to understand complex signal transduction networks.
To examine chromatophore control by FMRFamide-related peptide (FaRP), we investigated the pharmac... more To examine chromatophore control by FMRFamide-related peptide (FaRP), we investigated the pharmacological effect of FMRFamide on the chromatophores and the FMRFamide-immunoreactivity of nerves surrounding the muscles in the coastal squid, Sepioteuthis lessoniana. Applications of FMRFamide elicited expansion of black chromatophores and retraction of yellow chromatophores in the adult squid. FMRFamide-immunoreactive terminals were distributed along black chromatophore muscles but were not observed around the yellow ones. This means that FMRFamide functions differently for each of the two types of chromatophores in the adult squid. Moreover, the pharmacological effect of FMRFamide on the black chromatophores differed between adults and hatchlings; application of FMRFamide retracted black chromatophores in hatchlings but not in adults. These results indicate that certain squid species have an FaRP system for controlling the chromatophores in their skin and that the system changes during development.
Tachykinins (TKs) and their receptors have been shown to be expressed in the mammalian ovary. How... more Tachykinins (TKs) and their receptors have been shown to be expressed in the mammalian ovary. However, the biological roles of ovarian TKs have yet to be verified. Ci-TK-I and Ci-TK-R, characterized from the protochordate (ascidian), Ciona intestinalis, are prototypes of vertebrate TKs and their receptors. In the present study, we show a novel biological function of TKs as an inducible factor for oocyte growth using C. intestinalis as a model organism. Immunostaining demonstrated the specific expression of Ci-TK-R in test cells residing in oocytes at the vitellogenic stage. DNA microarray and realtime PCR revealed that Ci-TK-I induced gene expression of several proteases, including cathepsin D, chymotrypsin, and carboxy-peptidase B1, in the ovary. The enzymatic activities of these proteases in the ovary were also shown to be enhanced by Ci-TK-I. Of particular significance is that the treatment of Ciona oocytes with Ci-TK-I resulted in progression of growth from the vitellogenic stage to the post-vitellogenic stage. The Ci-TK-I-induced oocyte growth was blocked by a TK antagonist or by protease inhibitors. These results led to the conclusion that Ci-TK-I enhances growth of the vitellogenic oocytes via up-regulation of gene expression and enzymatic activities of the proteases. This is the first clarification of the biological roles of TKs in the ovary and the underlying essential molecular mechanism. Furthermore, considering the phylogenetic position of ascidians as basal chordates, we suggest that the novel TK-regulated oocyte growth is an "evolutionary origin" of the tachykininergic functions in the ovary. (Endocrinology 149: 4346-4356, 2008
... Kohji Hotta a , 1 , Hiroki Takahashi b , 1 , Tomomi Asakura a , Banjo Saitoh a , Naohito Taka... more ... Kohji Hotta a , 1 , Hiroki Takahashi b , 1 , Tomomi Asakura a , Banjo Saitoh a , Naohito Takatori a , Yutaka Satou a and Nori ... C. Queva, PJ Koskinen, E. Steingrimsson, DE Ayer, NG Copeland, NA Jenkins and RN Eisenman, Mad3 and Mad4: Novel Max-interacting transcriptional ...
All chordates, including urochordates such as tunicates, develop through embryogenesis. The chord... more All chordates, including urochordates such as tunicates, develop through embryogenesis. The chordate larvae of colonial tunicates metamorphose to lose all chordate structures such as notochord, neural tube, segmented musculature, and then develop by asexual reproduction [blastogenesis], whereby stem cells form tissues and organs. These two developmental pathways establish the same body axis, morphogenetic patterning and organ formation. It is unknown if this convergent morphology implies convergent cellular and molecular mechanisms, and whether the stem cells that mediate these processes differ. Using the colonial tunicate Botryllus schlosseri, we combined transcriptome sequencing and multiple microscopy techniques to study the molecular and morphological signatures of cells at each developmental stage of embryogenesis and blastogenesis. This revealed that the molecular programs are distinct, but the blastogenic tissue-specific stem cells and embryonic precursor populations share si...
Ontologies provide an important resource to integrate information. For developmental biology and ... more Ontologies provide an important resource to integrate information. For developmental biology and comparative anatomy studies, ontologies of a species are used to formalize and annotate data that are related to anatomical structures, their lineage and timing of development. Here, we have constructed the first ontology for anatomy and asexual development (blastogenesis) of a bilaterian, the colonial tunicate Botryllus schlosseri. Tunicates, like Botryllus schlosseri, are non-vertebrates and the only chordate taxon species that reproduce both sexually and asexually. Their tadpole larval stage possesses structures characteristic of all chordates, i.e. a notochord, a dorsal neural tube, and gill slits. Larvae settle and metamorphose into individuals that are either solitary or colonial. The latter reproduce both sexually and asexually and these two reproductive modes lead to essentially the same adult body plan. The Botryllus schlosseri Ontology of Development and Anatomy (BODA) will facilitate the comparison between both types of development. BODA uses the rules defined by the Open Biomedical Ontologies Foundry. It is based on studies that investigate the anatomy, blastogenesis and regeneration of this organism. BODA features allow the users to easily search and identify anatomical structures in the colony, to define the developmental stage, and to follow the morphogenetic events of a tissue and/or organ of interest throughout asexual development. We invite the scientific community to use this resource as a reference for the anatomy and developmental ontology of B. schlosseri and encourage recommendations for updates and improvements.
Uploads
Papers by Kohji Hotta