Chemical flooding technology has the potential to significantly increase oil production in many o... more Chemical flooding technology has the potential to significantly increase oil production in many of the mature oilfields in the US, most of which are operated by small producers and independent oil companies.
Two kinds of dewetting and their transition induced by composition fluctuation due to different c... more Two kinds of dewetting and their transition induced by composition fluctuation due to different composition in blend [poly(methyl methacrylate) (PMMA) and poly(styrene-ran-acrylonitrile) (SAN)] films on SiO x substrate at 145 C have been studied by in-situ atomic force microscopy (AFM). The results showed that morphology and pathway of dewetting depended crucially on the composition. Possible reason is the variation in intensity of composition fluctuation resulted from the change of components in polymer blend. Based on the discussion of this fluctuation due to the composition gradient, parameter of U q0 /E, which describes the initial amplitude of the surface undulation and original thickness of film respectively, has been employed to distinguish the morphologies of spontaneous dewetting including bicontinuous structures and holes. Prior to the investigation of dewetting, it is confirmed that this blend is miscible at 145 C using grazing incidence ultra small-angle X-ray scattering (GIUSAX).
By incorporating self-consistent field theory with lattice Boltzmann method, a model for polymer ... more By incorporating self-consistent field theory with lattice Boltzmann method, a model for polymer melts is proposed. Compared with models based on Ginzburg-Landau free energy, our model does not employ phenomenological free energies to describe systems and can consider the chain topological details of polymers. We use this model to study the effects of hydrodynamic interactions on the dynamics of microphase separation for block copolymers. In the early stage of phase separation, an exponential growth predicted by Cahn-Hilliard treatment is found. Simulation results also show that the effect of hydrodynamic interactions can be neglected in the early stage. For the late stage of phase separation, it is easy to see the effects of hydrodynamic interactions on the ordering process of lamellae phase. From the analysis of structure factor curves, we find that the growth of domains is faster if hydrodynamic interactions are introduced. Furthermore, the scaling of the pattern dynamics is investigated for the late stage at zero thermal noise. By studying the behavior of scaling exponents of the structure factor and the nematic order-parameter correlation function C(nn), we can see that the effects of hydrodynamic interactions lead to bigger growth exponent for both functions.
Ten Kansas oil reservoirs/leases were studied through geological and engineering analysis to asse... more Ten Kansas oil reservoirs/leases were studied through geological and engineering analysis to assess the potential performance of chemical flooding to recover oil. Reservoirs/leases that have been efficiently waterflooded have the highest performance potential for chemical flooding. Laboratory work to identify efficient chemical systems and to test the oil recovery performance of the systems was the major effort of the project. Efficient chemical systems were identified for crude oils from nine of the reservoirs/leases. Oil recovery performance of the identified chemical systems in Berea sandstone rocks showed 90 + % recoveries of waterflood residual oil for seven crude oils. Oil recoveries increased with the amount of chemical injected. Recoveries were less in Indiana limestone cores. One formulation recovered 80% of the tertiary oil in the limestone rock. Geological studies for nine of the oil reservoirs are presented. Pleasant Prairie, Trembley, Vinland and Stewart Oilfields in Kansas were the most favorable of the studied reservoirs for a pilot chemical flood from geological considerations. Computer simulations of the performance of a laboratory coreflood were used to predict a field application of chemical flooding for the Trembley Oilfield. Estimates of field applications indicated chemical flooding is an economically viable technology for oil recovery.
Chemical flooding technology has the potential to significantly increase oil production in many o... more Chemical flooding technology has the potential to significantly increase oil production in many of the mature oilfields in the US, most of which are operated by small producers and independent oil companies.
Two kinds of dewetting and their transition induced by composition fluctuation due to different c... more Two kinds of dewetting and their transition induced by composition fluctuation due to different composition in blend [poly(methyl methacrylate) (PMMA) and poly(styrene-ran-acrylonitrile) (SAN)] films on SiO x substrate at 145 C have been studied by in-situ atomic force microscopy (AFM). The results showed that morphology and pathway of dewetting depended crucially on the composition. Possible reason is the variation in intensity of composition fluctuation resulted from the change of components in polymer blend. Based on the discussion of this fluctuation due to the composition gradient, parameter of U q0 /E, which describes the initial amplitude of the surface undulation and original thickness of film respectively, has been employed to distinguish the morphologies of spontaneous dewetting including bicontinuous structures and holes. Prior to the investigation of dewetting, it is confirmed that this blend is miscible at 145 C using grazing incidence ultra small-angle X-ray scattering (GIUSAX).
By incorporating self-consistent field theory with lattice Boltzmann method, a model for polymer ... more By incorporating self-consistent field theory with lattice Boltzmann method, a model for polymer melts is proposed. Compared with models based on Ginzburg-Landau free energy, our model does not employ phenomenological free energies to describe systems and can consider the chain topological details of polymers. We use this model to study the effects of hydrodynamic interactions on the dynamics of microphase separation for block copolymers. In the early stage of phase separation, an exponential growth predicted by Cahn-Hilliard treatment is found. Simulation results also show that the effect of hydrodynamic interactions can be neglected in the early stage. For the late stage of phase separation, it is easy to see the effects of hydrodynamic interactions on the ordering process of lamellae phase. From the analysis of structure factor curves, we find that the growth of domains is faster if hydrodynamic interactions are introduced. Furthermore, the scaling of the pattern dynamics is investigated for the late stage at zero thermal noise. By studying the behavior of scaling exponents of the structure factor and the nematic order-parameter correlation function C(nn), we can see that the effects of hydrodynamic interactions lead to bigger growth exponent for both functions.
Ten Kansas oil reservoirs/leases were studied through geological and engineering analysis to asse... more Ten Kansas oil reservoirs/leases were studied through geological and engineering analysis to assess the potential performance of chemical flooding to recover oil. Reservoirs/leases that have been efficiently waterflooded have the highest performance potential for chemical flooding. Laboratory work to identify efficient chemical systems and to test the oil recovery performance of the systems was the major effort of the project. Efficient chemical systems were identified for crude oils from nine of the reservoirs/leases. Oil recovery performance of the identified chemical systems in Berea sandstone rocks showed 90 + % recoveries of waterflood residual oil for seven crude oils. Oil recoveries increased with the amount of chemical injected. Recoveries were less in Indiana limestone cores. One formulation recovered 80% of the tertiary oil in the limestone rock. Geological studies for nine of the oil reservoirs are presented. Pleasant Prairie, Trembley, Vinland and Stewart Oilfields in Kansas were the most favorable of the studied reservoirs for a pilot chemical flood from geological considerations. Computer simulations of the performance of a laboratory coreflood were used to predict a field application of chemical flooding for the Trembley Oilfield. Estimates of field applications indicated chemical flooding is an economically viable technology for oil recovery.
Uploads
Papers by Kaixu Song