Tomato represents an important source of fiber and nutrients in the human diet and is a central m... more Tomato represents an important source of fiber and nutrients in the human diet and is a central model for the study of fruit biology. To identify components of fruit metabolic composition, here we have phenotyped tomato introgression lines (ILs) containing chromosome segments of a wild species in the genetic background of a cultivated variety. Using this high-diversity population, we identify 889 quantitative fruit metabolic loci and 326 loci that modify yield-associated traits. The mapping analysis indicates that at least 50% of the metabolic loci are associated with quantitative trait loci (QTLs) that modify wholeplant yield-associated traits. We generate a cartographic network based on correlation analysis that reveals whole-plant phenotype associated and independent metabolic associations, including links with metabolites of nutritional and organoleptic importance. The results of our genomic survey illustrate the power of genome-wide metabolic profiling and detailed morphological analysis for uncovering traits with potential for crop breeding.
Tomato represents an important source of fiber and nutrients in the human diet and is a central m... more Tomato represents an important source of fiber and nutrients in the human diet and is a central model for the study of fruit biology. To identify components of fruit metabolic composition, here we have phenotyped tomato introgression lines (ILs) containing chromosome segments of a wild species in the genetic background of a cultivated variety. Using this high-diversity population, we identify 889 quantitative fruit metabolic loci and 326 loci that modify yield-associated traits. The mapping analysis indicates that at least 50% of the metabolic loci are associated with quantitative trait loci (QTLs) that modify wholeplant yield-associated traits. We generate a cartographic network based on correlation analysis that reveals whole-plant phenotype associated and independent metabolic associations, including links with metabolites of nutritional and organoleptic importance. The results of our genomic survey illustrate the power of genome-wide metabolic profiling and detailed morphological analysis for uncovering traits with potential for crop breeding.
Uploads
Papers by J. Kopka