Papers by JITENDRA NARAYAN GUPTA
BMC physiology, Jan 15, 2004
Lipoprotein lipase (LPL) is anchored at the vascular endothelium through interaction with heparan... more Lipoprotein lipase (LPL) is anchored at the vascular endothelium through interaction with heparan sulfate. It is not known how this enzyme is turned over but it has been suggested that it is slowly released into blood and then taken up and degraded in the liver. Heparin releases the enzyme into the circulating blood. Several lines of evidence indicate that this leads to accelerated flux of LPL to the liver and a temporary depletion of the enzyme in peripheral tissues. Rat livers were found to contain substantial amounts of LPL, most of which was catalytically inactive. After injection of heparin, LPL mass in liver increased for at least an hour. LPL activity also increased, but not in proportion to mass, indicating that the lipase soon lost its activity after being bound/taken up in the liver. To further study the uptake, bovine LPL was labeled with 125I and injected. Already two min after injection about 33 % of the injected lipase was in the liver where it initially located along ...
Nephrology Dialysis Transplantation, 2005
Background. Low molecular weight heparins (LMWH) are increasingly used during haemodialysis (HD) ... more Background. Low molecular weight heparins (LMWH) are increasingly used during haemodialysis (HD) to prevent clotting in the extracorporeal devices. It has been suggested that LMWH release endothelial-bound lipoprotein lipase (LPL) less efficiently than unfractionated heparin (UFH) does and thereby cause less disturbance of lipid metabolism. Evidence from in vitro studies and from animal experiments indicate, however, that both types of heparin preparations have the same ability to release endothelial LPL, but LMWH are less effective in preventing uptake and degradation of LPL in the liver. Model studies in humans indicate that LMWH cause as much depletion of LPL stores and impaired lipolysis of triglyceride (TG)-rich lipoproteins as UFH does. Methods. Two anticoagulant regimes based on present clinical practice were compared in nine HD patients. UFH was administered as a primed infusion, whereas the LMWH (dalteparin) was given only as a single bolus pre-dialysis. Blood was sampled regularly for LPL activity and TG. Results. LPL activity in blood was significantly lower during the dialysis with dalteparin. To explore the remaining activity at the endothelium, a bolus of UFH was given after 3 h of dialysis. The bolus brought out about the same amount of LPL, regardless of whether UFH or dalteparin had been used during dialysis. The increase in TG was significantly higher during dialysis with dalteparin. Conclusions. This study indicates that a single bolus of dalteparin pre-dialysis interferes with the LPL system as much as, or more than an infusion of UFH does.
American Journal of Physiology-Renal Physiology, 2004
Much evidence points to a relationship among kidney disease, lipoprotein metabolism, and the enzy... more Much evidence points to a relationship among kidney disease, lipoprotein metabolism, and the enzyme lipoprotein lipase (LPL), but there is little information on LPL in the kidney. The range of LPL activity in the kidney in five species differed by >500-fold. The highest activity was in mink, followed by mice, Chinese hamsters, and rats, whereas the activity was low in guinea pigs. In contrast, the ranges for LPL activities in heart and adipose tissue were less than six- and fourfold, respectively. The activity in the kidney (in mice) decreased by >50% on food deprivation for 6 h without corresponding changes in mRNA or mass. This decrease in LPL activity did not occur when transcription was blocked with actinomycin D. Immunostaining for kidney LPL in mice and mink indicated that the enzyme is produced in tubular epithelial cells. To explore the previously suggested possibility that the negatively charged glomerular filter picks up LPL from the blood, bovine LPL was injected in...
American Journal of Physiology-Endocrinology and Metabolism, 2007
The enzyme lipoprotein lipase (LPL) releases fatty acids from lipoprotein triglycerides for use i... more The enzyme lipoprotein lipase (LPL) releases fatty acids from lipoprotein triglycerides for use in cell metabolism. LPL activity is rapidly modulated in a tissue-specific manner. Recent studies have shown that in rat adipose tissue this occurs by a shift of extracellular LPL toward an inactive form catalyzed by an LPL-controlling protein whose expression changes in response to the nutritional state. To explore whether a similar mechanism operates in other tissues we injected actinomycin D to block transcription of the putative LPL controlling protein(s). When actinomycin was given to fed rats, heparin-releasable LPL activity increased by 160% in heart and by 150% in a skeletal muscle (soleus) in 6 h. Postheparin LPL activity in blood increased by about 200%. To assess the state of extracellular LPL we subjected the spontaneously released LPL in heart perfusates to chromatography on heparin-agarose, which separates the active and inactive forms of the lipase. The amount of lipase pro...
Uploads
Papers by JITENDRA NARAYAN GUPTA