Naturally generated autoantibodies to tumor-associated antigens such as MUC1 can assist in cancer... more Naturally generated autoantibodies to tumor-associated antigens such as MUC1 can assist in cancer diagnosis and prognosis. While previous studies have concentrated on the tandem repeat array domain of MUC1, here we focused on MUC1's signal peptide domain. We used ELISA assays with MUC1-specific epitopes and antibodies to quantify soluble MUC1 antigen and anti-MUC1 autoantibodies against the tandem repeat array and signal peptide domains in 15 naïve donors and 27 multiple myeloma cancer patients. We showed a significant increase in up to 24-fold (P<0.004) only in the levels of anti-MUC1 signal peptide autoantibodies in the sera of multiple myeloma patients vs. naïve donors. This increase stemmed chiefly from the preferred immunogenicity of the signal peptide. Moreover, a significant positive correlation (R(2)=0.5361, P<0.048, Pearson correlation) was shown between the levels of soluble MUC1 and anti-MUC1 signal peptide autoantibodies in multiple myeloma patients with progre...
An optimal cancer vaccine should be able to induce highly potent, long-lasting, tumor-specific re... more An optimal cancer vaccine should be able to induce highly potent, long-lasting, tumor-specific responses in the majority of the cancer patient population. One approach for achieving this is to use synthetic peptide vaccines derived from widely expressed tumor-associated antigens, that promiscuously bind multiple MHC class I and class II alleles. MUC1-SP-L (ImMucin, VXL100) is a 21mer peptide encoding the complete signal peptide domain of MUC1, a tumor-associated antigen expressed by over 90% of solid and non-solid tumors. MUC1-SP-L was predicted in silico to bind various MHC class I and MHC class II alleles, covering the majority of the Caucasian population. PBLs obtained from 13 naïve donors all proliferated, with a Stimulation Index (SI ≥ 2), to the MUC1-SP-L peptide, producing mixed CD4 + and CD8 + responses. Similar results were manifested by MUC1-SP-L in PBLs derived from 9 of 10 cancer patients with MUC1 positive tumors. CD4 + and CD8 + T cell populations exhibited CD45RO memory markers and secreted IFN-gamma and IL-2 following stimulation with MUC1-SP-L. These T cells also exhibited proliferation to the MUC1-SP-L inner 9mer epitopes and cytotoxicity against tumor cell lines expressing MUC1 and a concordant MHC class I allele. Cytotoxicity to MUC1-expressing human and murine tumors was shown also in T cells obtained from HLA-A2 transgenic mice and BALB/c syngeneic mice immunized with the MUC1-SP-L and GM-CSF. In an immunotherapy model, BALB/c mice inoculated with metastatic MUC1 transfected murine DA3 mammary tumor cells, exhibited significantly prolonged survival following vaccination with MUC1-SP-L. Our results indicate superior immunological and anti-tumor properties of MUC1-SP-L compared to previously published MUC1-derived epitopes.
The MUC1 tumor associated antigen is highly expressed on a range of tumors. Its broad distributio... more The MUC1 tumor associated antigen is highly expressed on a range of tumors. Its broad distribution on primary tumors and metastases renders it an attractive target for immunotherapy. After synthesis MUC1 is cleaved, yielding a large soluble extracellular alpha subunit containing the tandem repeats array (TRA) domain specifically bound, via non-covalent interaction, to a smaller beta subunit containing the transmembrane and cytoplasmic domains. Thus far, inconclusive efficacy has been reported for anti-MUC1 antibodies directed against the soluble alpha subunit. Targeting the cell bound beta subunit, may bypass limitations posed by circulating TRA domains. MUC1's signal peptide (SP) domain promiscuously binds multiple MHC class II and Class I alleles, which upon vaccination, generated robust T-cell immunity against MUC1positive tumors. This is a first demonstration of non-MHC associated, MUC1 specific, cell surfaces presence for MUC1 SP domain. Polyclonal and monoclonal antibodies generated against MUC1 SP domain specifically bind a large variety of MUC1-positive human solid and haematological tumor cell lines; MUC1-positive bone marrow derived plasma cells obtained from multiple myeloma (MM)-patients, but not MUC1 negative tumors cells, and normal naive primary blood and epithelial cells. Membranal MUC1 SP appears mainly as an independent entity but also co-localized with the full MUC1 molecule. MUC1-SP specific binding in BM-derived plasma cells can assist in selecting patients to be treated with anti-MUC1 SP therapeutic vaccine, ImMucin. A therapeutic potential of the anti-MUC1 SP antibodies was suggested by their ability to support of complement-mediated lysis of MUC1-positive tumor cells but not MUC1 negative tumor cells and normal naive primary epithelial cells. These findings suggest a novel cell surface presence of MUC1 SP domain, a potential therapeutic benefit for anti-MUC1 SP antibodies in MUC1-positive tumors and a selection tool for MM patients to be treated with the anti-MUC1 SP vaccine, ImMucin.
The mode and timing of virally induced cell death hold the potential of regulating viral yield, v... more The mode and timing of virally induced cell death hold the potential of regulating viral yield, viral transmission, and the severity of virally induced disease. Orbiviruses such as the epizootic hemorrhagic disease virus (EHDV) are nonenveloped and cytolytic. To date, the death of cells infected with EHDV, the signal transduction pathways involved in this process, and the consequence of their inhibition have yet to be characterized. Here, we report that the Ibaraki strain of EHDV2 (EHDV2-IBA) induces apoptosis, autophagy, a decrease in cellular protein synthesis, the activation of c-Jun N-terminal kinase (JNK), and the phosphorylation of the JNK substrate c-Jun.
Mitotic cells undergo extensive changes in shape and size through the altered regulation and func... more Mitotic cells undergo extensive changes in shape and size through the altered regulation and function of their membrane trafficking machinery. Disabled 2 (Dab2), a multidomain cargo-specific endocytic adaptor and a mediator of signal transduction, is a potential integrator of trafficking and signaling. Dab2 binds effectors of signaling and trafficking that localize to different intracellular compartments. Thus, differential localization is a putative regulatory mechanism of Dab2 function. Furthermore, Dab2 is phosphorylated in mitosis and is thus regulated in the cell cycle. However, a detailed description of the intracellular localization of Dab2 in the different phases of mitosis and an understanding of the functional consequences of its phosphorylation are lacking. Here, we show that Dab2 is progressively displaced from the membrane in mitosis. This phenomenon is paralleled by a loss of co-localization with clathrin. Both phenomena culminate in metaphase/anaphase and undergo partial recovery in cytokinesis. Treatment with 2-methoxyestradiol, which arrests cells at the spindle assembly checkpoint, induces the same effects observed in metaphase cells. Moreover, 2-methoxyestradiol also induced Dab2 phosphorylation and reduced Dab2/clathrin interactions, endocytic vesicle motility, clathrin exchange dynamics, and the internalization of a receptor endowed with an NPXY endocytic signal. Serine/threonine to alanine mutations, of residues localized to the central region of Dab2, attenuated its phosphorylation, reduced its membrane displacement, and maintained its endocytic abilities in mitosis. We propose that the negative regulation of Dab2 is part of an accommodation of the cell to the altered physicochemical conditions prevalent in mitosis, aimed at allowing endocytic activity throughout the cell cycle.
Epithelial to mesenchymal transition (EMT) integrates changes to cell morphology and signaling pa... more Epithelial to mesenchymal transition (EMT) integrates changes to cell morphology and signaling pathways resulting from modifications to the cell&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39;s transcriptional response. Different combinations of stimuli ignite this process in the contexts of development or tumor progression. The human MUC1 gene encodes multiple alternatively spliced forms of a polymorphic oncoprotein that is aberrantly expressed in epithelial malignancies. MUC1 is endowed with various signaling modules and has the potential to mediate proliferative and morphological changes characteristic of the progression of epithelial tumors. The tyrosine-rich cytoplasmic domain and the heavily glycosylated extracellular domain both play a role in MUC1-mediated signal transduction. However, the attribution of function to specific domains of MUC1 is difficult due to the concomitant presence of multiple forms of the protein, which stem from alternative splicing and proteolytic cleavage. Here we show that DA3 mouse mammary tumor cells stably transfected with a truncated genomic fragment of human MUC1 undergo EMT. In their EMT, these cells demonstrate altered [i] morphology, [ii] signaling pathways and [iii] expression of epithelial and mesenchymal markers. Similarly to well characterized human breast cancer cell lines, cells transfected with truncated MUC1 show an ERK-dependent increased spreading on fibronectin, and a PI3K-dependent enhancement of their proliferative rate.
Updated information and services can be found at: These include: SUPPLEMENTAL MATERIAL Supplement... more Updated information and services can be found at: These include: SUPPLEMENTAL MATERIAL Supplemental material REFERENCES http://cvi.asm.org/content/20/3/328#ref-list-1 at: This article cites 41 articles, 14 of which can be accessed free CONTENT ALERTS more» articles cite this article), Receive: RSS Feeds, eTOCs, free email alerts (when new http://journals.asm.org/site/misc/reprints.xhtml Information about commercial reprint orders: http://journals.asm.org/site/subscriptions/ To subscribe to to another ASM Journal go to:
Naturally generated autoantibodies to tumor-associated antigens such as MUC1 can assist in cancer... more Naturally generated autoantibodies to tumor-associated antigens such as MUC1 can assist in cancer diagnosis and prognosis. While previous studies have concentrated on the tandem repeat array domain of MUC1, here we focused on MUC1's signal peptide domain. We used ELISA assays with MUC1-specific epitopes and antibodies to quantify soluble MUC1 antigen and anti-MUC1 autoantibodies against the tandem repeat array and signal peptide domains in 15 naïve donors and 27 multiple myeloma cancer patients. We showed a significant increase in up to 24-fold (P<0.004) only in the levels of anti-MUC1 signal peptide autoantibodies in the sera of multiple myeloma patients vs. naïve donors. This increase stemmed chiefly from the preferred immunogenicity of the signal peptide. Moreover, a significant positive correlation (R(2)=0.5361, P<0.048, Pearson correlation) was shown between the levels of soluble MUC1 and anti-MUC1 signal peptide autoantibodies in multiple myeloma patients with progre...
An optimal cancer vaccine should be able to induce highly potent, long-lasting, tumor-specific re... more An optimal cancer vaccine should be able to induce highly potent, long-lasting, tumor-specific responses in the majority of the cancer patient population. One approach for achieving this is to use synthetic peptide vaccines derived from widely expressed tumor-associated antigens, that promiscuously bind multiple MHC class I and class II alleles. MUC1-SP-L (ImMucin, VXL100) is a 21mer peptide encoding the complete signal peptide domain of MUC1, a tumor-associated antigen expressed by over 90% of solid and non-solid tumors. MUC1-SP-L was predicted in silico to bind various MHC class I and MHC class II alleles, covering the majority of the Caucasian population. PBLs obtained from 13 naïve donors all proliferated, with a Stimulation Index (SI ≥ 2), to the MUC1-SP-L peptide, producing mixed CD4 + and CD8 + responses. Similar results were manifested by MUC1-SP-L in PBLs derived from 9 of 10 cancer patients with MUC1 positive tumors. CD4 + and CD8 + T cell populations exhibited CD45RO memory markers and secreted IFN-gamma and IL-2 following stimulation with MUC1-SP-L. These T cells also exhibited proliferation to the MUC1-SP-L inner 9mer epitopes and cytotoxicity against tumor cell lines expressing MUC1 and a concordant MHC class I allele. Cytotoxicity to MUC1-expressing human and murine tumors was shown also in T cells obtained from HLA-A2 transgenic mice and BALB/c syngeneic mice immunized with the MUC1-SP-L and GM-CSF. In an immunotherapy model, BALB/c mice inoculated with metastatic MUC1 transfected murine DA3 mammary tumor cells, exhibited significantly prolonged survival following vaccination with MUC1-SP-L. Our results indicate superior immunological and anti-tumor properties of MUC1-SP-L compared to previously published MUC1-derived epitopes.
The MUC1 tumor associated antigen is highly expressed on a range of tumors. Its broad distributio... more The MUC1 tumor associated antigen is highly expressed on a range of tumors. Its broad distribution on primary tumors and metastases renders it an attractive target for immunotherapy. After synthesis MUC1 is cleaved, yielding a large soluble extracellular alpha subunit containing the tandem repeats array (TRA) domain specifically bound, via non-covalent interaction, to a smaller beta subunit containing the transmembrane and cytoplasmic domains. Thus far, inconclusive efficacy has been reported for anti-MUC1 antibodies directed against the soluble alpha subunit. Targeting the cell bound beta subunit, may bypass limitations posed by circulating TRA domains. MUC1's signal peptide (SP) domain promiscuously binds multiple MHC class II and Class I alleles, which upon vaccination, generated robust T-cell immunity against MUC1positive tumors. This is a first demonstration of non-MHC associated, MUC1 specific, cell surfaces presence for MUC1 SP domain. Polyclonal and monoclonal antibodies generated against MUC1 SP domain specifically bind a large variety of MUC1-positive human solid and haematological tumor cell lines; MUC1-positive bone marrow derived plasma cells obtained from multiple myeloma (MM)-patients, but not MUC1 negative tumors cells, and normal naive primary blood and epithelial cells. Membranal MUC1 SP appears mainly as an independent entity but also co-localized with the full MUC1 molecule. MUC1-SP specific binding in BM-derived plasma cells can assist in selecting patients to be treated with anti-MUC1 SP therapeutic vaccine, ImMucin. A therapeutic potential of the anti-MUC1 SP antibodies was suggested by their ability to support of complement-mediated lysis of MUC1-positive tumor cells but not MUC1 negative tumor cells and normal naive primary epithelial cells. These findings suggest a novel cell surface presence of MUC1 SP domain, a potential therapeutic benefit for anti-MUC1 SP antibodies in MUC1-positive tumors and a selection tool for MM patients to be treated with the anti-MUC1 SP vaccine, ImMucin.
The mode and timing of virally induced cell death hold the potential of regulating viral yield, v... more The mode and timing of virally induced cell death hold the potential of regulating viral yield, viral transmission, and the severity of virally induced disease. Orbiviruses such as the epizootic hemorrhagic disease virus (EHDV) are nonenveloped and cytolytic. To date, the death of cells infected with EHDV, the signal transduction pathways involved in this process, and the consequence of their inhibition have yet to be characterized. Here, we report that the Ibaraki strain of EHDV2 (EHDV2-IBA) induces apoptosis, autophagy, a decrease in cellular protein synthesis, the activation of c-Jun N-terminal kinase (JNK), and the phosphorylation of the JNK substrate c-Jun.
Mitotic cells undergo extensive changes in shape and size through the altered regulation and func... more Mitotic cells undergo extensive changes in shape and size through the altered regulation and function of their membrane trafficking machinery. Disabled 2 (Dab2), a multidomain cargo-specific endocytic adaptor and a mediator of signal transduction, is a potential integrator of trafficking and signaling. Dab2 binds effectors of signaling and trafficking that localize to different intracellular compartments. Thus, differential localization is a putative regulatory mechanism of Dab2 function. Furthermore, Dab2 is phosphorylated in mitosis and is thus regulated in the cell cycle. However, a detailed description of the intracellular localization of Dab2 in the different phases of mitosis and an understanding of the functional consequences of its phosphorylation are lacking. Here, we show that Dab2 is progressively displaced from the membrane in mitosis. This phenomenon is paralleled by a loss of co-localization with clathrin. Both phenomena culminate in metaphase/anaphase and undergo partial recovery in cytokinesis. Treatment with 2-methoxyestradiol, which arrests cells at the spindle assembly checkpoint, induces the same effects observed in metaphase cells. Moreover, 2-methoxyestradiol also induced Dab2 phosphorylation and reduced Dab2/clathrin interactions, endocytic vesicle motility, clathrin exchange dynamics, and the internalization of a receptor endowed with an NPXY endocytic signal. Serine/threonine to alanine mutations, of residues localized to the central region of Dab2, attenuated its phosphorylation, reduced its membrane displacement, and maintained its endocytic abilities in mitosis. We propose that the negative regulation of Dab2 is part of an accommodation of the cell to the altered physicochemical conditions prevalent in mitosis, aimed at allowing endocytic activity throughout the cell cycle.
Epithelial to mesenchymal transition (EMT) integrates changes to cell morphology and signaling pa... more Epithelial to mesenchymal transition (EMT) integrates changes to cell morphology and signaling pathways resulting from modifications to the cell&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39;s transcriptional response. Different combinations of stimuli ignite this process in the contexts of development or tumor progression. The human MUC1 gene encodes multiple alternatively spliced forms of a polymorphic oncoprotein that is aberrantly expressed in epithelial malignancies. MUC1 is endowed with various signaling modules and has the potential to mediate proliferative and morphological changes characteristic of the progression of epithelial tumors. The tyrosine-rich cytoplasmic domain and the heavily glycosylated extracellular domain both play a role in MUC1-mediated signal transduction. However, the attribution of function to specific domains of MUC1 is difficult due to the concomitant presence of multiple forms of the protein, which stem from alternative splicing and proteolytic cleavage. Here we show that DA3 mouse mammary tumor cells stably transfected with a truncated genomic fragment of human MUC1 undergo EMT. In their EMT, these cells demonstrate altered [i] morphology, [ii] signaling pathways and [iii] expression of epithelial and mesenchymal markers. Similarly to well characterized human breast cancer cell lines, cells transfected with truncated MUC1 show an ERK-dependent increased spreading on fibronectin, and a PI3K-dependent enhancement of their proliferative rate.
Updated information and services can be found at: These include: SUPPLEMENTAL MATERIAL Supplement... more Updated information and services can be found at: These include: SUPPLEMENTAL MATERIAL Supplemental material REFERENCES http://cvi.asm.org/content/20/3/328#ref-list-1 at: This article cites 41 articles, 14 of which can be accessed free CONTENT ALERTS more» articles cite this article), Receive: RSS Feeds, eTOCs, free email alerts (when new http://journals.asm.org/site/misc/reprints.xhtml Information about commercial reprint orders: http://journals.asm.org/site/subscriptions/ To subscribe to to another ASM Journal go to:
Uploads
Papers by Galit Horn