Papers by Elodie Paillard
neurogenetics, 2010
Spinal muscular atrophy (SMA) is a neurodegenerative disease characterized by motor neuron loss a... more Spinal muscular atrophy (SMA) is a neurodegenerative disease characterized by motor neuron loss and skeletal muscle atrophy. The loss of function of the smn1 gene, the main supplier of survival motor neuron protein (SMN) protein in human, leads to reduced levels of SMN and eventually to SMA. Here, we ask if the amphibian Xenopus tropicalis can be a good model system to study SMA. Inhibition of the production of SMN using antisense morpholinos leads to caudal muscular atrophy in tadpoles. Of note, early developmental patterning of muscles and motor neurons is unaffected in this system as well as acetylcholine receptors clustering. Muscular atrophy seems to rather result from aberrant pathfinding and growth arrest and/or shortening of motor axons. This event occurs in the absence of neuronal cell bodies apoptosis, a process comparable to that of amyotrophic lateral sclerosis. Xenopus tropicalis is revealed as a complementary animal model for the study of SMA.
Developmental Dynamics, 2009
The precise localization of gene expression within the developing embryo, and how it changes over... more The precise localization of gene expression within the developing embryo, and how it changes over time, is one of the most important sources of information for elucidating gene function. As a searchable resource, this information has up until now been largely inaccessible to the Xenopus community. Here, we present a new database of Xenopus gene expression patterns, queryable by specific location or region in the embryo. Pattern matching can be driven either from an existing in situ image, or from a user-defined pattern based on development stage schematic diagrams. The data are derived from the work of a group of 21 Xenopus researchers over a period of 4 days. We used a novel, rapid manual annotation tool, XenMARK, which exploits the ability of the human brain to make the necessary distortions in transferring data from the in situ images to the standard schematic geometry.
Biotechnology and Bioengineering, 2012
Synthetic biology and metabolic engineering are used to develop new strategies for producing valu... more Synthetic biology and metabolic engineering are used to develop new strategies for producing valuable compounds ranging from therapeutics to biofuels in engineered microorganisms. When developing methods for high-titer production cells, toxicity is an important element to consider. Indeed the production rate can be limited due to toxic intermediates or accumulation of byproducts of the heterologous biosynthetic pathway of interest. Conversely, highly toxic molecules are desired when designing antimicrobials. Compound toxicity in bacteria plays a major role in metabolic engineering as well as in the development of new antibacterial agents. Here, we screened a diversified chemical library of 166 compounds for toxicity in Escherichia coli. The dataset was built using a clustering algorithm maximizing the chemical diversity in the library. The resulting assay data was used to develop a toxicity predictor that we used to assess the toxicity of metabolites throughout the metabolome. This new tool for predicting toxicity can thus be used for fine-tuning heterologous expression and can be integrated in a computational-framework for metabolic pathway design. Many structure-activity relationship tools have been developed for toxicology studies in eukaryotes [Valerio (2009), Toxicol Appl Pharmacol, 241(3): 356-370], however, to the best of our knowledge we present here the first E. coli toxicity prediction web server based on QSAR models (EcoliTox server: http://www.issb.genopole.fr/∼faulon/EcoliTox.php).
Animal Feed Science and Technology, 1995
ABSTRACT The concept and methodology for the determination of digestible amino acids for poultry ... more ABSTRACT The concept and methodology for the determination of digestible amino acids for poultry is discussed. True amino acid values of raw materials commonly used as feed ingredients are presented, including variability coefficients. The advantages of formulating on a digestible amino acid basis rather than total amino acid basis are demonstrated with lysine-deficient diets.For practical usage, the application of digestibility coefficients to the amino acid recommendations has been compared with the results from growth tests for determining the requirements for lysine and sulphur amino acid. The results are in good agreement, demonstrating the validity of this technique, which is applicable to any set of recommendations for feed formulation. New recommendations in digestible amino acids are proposed as an example.
Uploads
Papers by Elodie Paillard