• Monkeys generally learned to apply progressively larger forces to counter the stiffness of diff... more • Monkeys generally learned to apply progressively larger forces to counter the stiffness of differing springs. Although one monkey did not greatly exceed the force needed for the stiffer spring, he continued to match the force needed to open the drawer when the initial spring compression was increased.
This study investigated the relationship between hand preference and motor learning in rhesus mon... more This study investigated the relationship between hand preference and motor learning in rhesus monkeys executing fine manipulation tasks. We hypothesized that the differences in skill level of the two hands before and after task practice will strongly correlate with the magnitude of the handedness index. Subjects were male and female adult rhesus monkeys (Macaca mulatta). Preferred hand and degree of hand preference were assessed using a handedness index computed based on the percentage of initial reaches and successful acquisitions for each hand using a dexterity (Klüver) board task in which the monkeys could reach for food pellets with either hand. After assessing hand preference, monkeys were trained in two tasks using each hand without the need for restraint. These tasks were: (1) a modified movement assessment panel in which the monkey grasped and lifted carrot chips (with a central punched hole) from a flat surface and over straight and curved rods and (2) a modified dexterity ...
The Journal of neuroscience : the official journal of the Society for Neuroscience, 2003
When repetitively lifting an object with randomly varying mechanical properties, the fingertip fo... more When repetitively lifting an object with randomly varying mechanical properties, the fingertip forces reflect the previous lift. We examined the specificity of this "sensorimotor memory" by observing the effects of an isolated pinch on the subsequent lift of a known object. In this case, the pinch force was unrelated to the fingertip forces necessary to grip the object efficiently. The peak grip force used to lift the test object (4 N weight) depended on the preceding task. Compared with repetitively lifting the 4 N test object, the peak grip force was 2 N greater when a lift of the same object was preceded by a lift in which a hidden mass was attached to the object to increase the weight to 8 N. This 2 N increase in grip force also occurred when subjects lifted the 4 N test object after pinching a force transducer with a force of 8 N. Thus, similar grip forces were stored in sensorimotor memory for both tasks, and reflected subjects' use of 7.9 +/- 1.1 N to lift the 8...
We encountered a man with an unusual reaching disturbance due to a stroke in the right occipito-t... more We encountered a man with an unusual reaching disturbance due to a stroke in the right occipito-temporal cortex and subjacent white matter. We studied his behavior in detail including vision and hand control. He had a left homonymous hemianopia. In his remaining fields static visual acuity and stereoacuity were normal, but he could not detect a coherent motion signal or follow moving targets with smooth pursuit. Transduction of limb movements using an optoelectronic technique showed abnormal morphology, increased variability and markedly prolonged latencies for transport to external visual targets, yet he achieved these targets with precision. Reaching to self-bound targets, and to the remembered locations of external targets with vision blocked was 5 x faster. The findings may be explained by: (1) damage in regions homologous to areas TF and TH in the monkey, which provide visual inputs to hand and forelimb representations in the cortex; (2) injury in human regions homologous to the monkey's MT complex, with inability to use visual information on the movement of the limb due to a visual motion processing defect; and (3) disruption of visual cortical-subcortical connections mediating crucial transformations among limb and target representations.
Journal of Pharmacology and Experimental Therapeutics, 2010
The preclinical characterization of WS-50030 [7-{4-[3-(1H-inden-3-yl)propyl]piperazin-1-yl}-1,3-b... more The preclinical characterization of WS-50030 [7-{4-[3-(1H-inden-3-yl)propyl]piperazin-1-yl}-1,3-benzoxazol-2(3H)-one] is described. In vitro binding and functional studies revealed highest affinity to the D(2) receptor (D(2L) K(i), 4.0 nM) and serotonin transporter (K(i), 7.1 nM), potent D(2) partial agonist activity (EC(50), 0.38 nM; E(max), 30%), and complete block of the serotonin transporter (IC(50), 56.4 nM). Consistent with this in vitro profile, WS-50030 (10 mg/kg/day, 21 days) significantly increased extracellular 5-HT in the rat medial prefrontal cortex, short-term WS-50030 treatment blocked apomorphine-induced climbing (ID(50), 0.51 mg/kg) in a dose range that produced minimal catalepsy in mice and induced low levels of contralateral rotation in rats with unilateral substantia nigra 6-hydroxydopamine lesions (10 mg/kg i.p.), a behavioral profile similar to that of the D(2) partial agonist aripiprazole. In a rat model predictive of antipsychotic-like activity, WS-50030 and aripiprazole reduced conditioned avoidance responding by 42 and 55% at 10 mg/kg, respectively. Despite aripiprazole's reported lack of effect on serotonin transporters, long-term treatment with aripiprazole or WS-50030 reversed olfactory bulbectomy-induced hyperactivity at doses that did not reduce activity in sham-operated rats, indicating antidepressant-like activity for both compounds. Despite possessing serotonin reuptake inhibitory activity in addition to D(2) receptor partial agonism, WS-50030 displays activity in preclinical models predictive of antipsychotic- and antidepressant efficacy similar to aripiprazole, suggesting potential efficacy of WS-50030 versus positive and negative symptoms of schizophrenia, comorbid mood symptoms, bipolar disorder, major depressive disorder, and treatment-resistant depression. Furthermore, WS-50030 provides a tool to further explore how combining these mechanisms might differentiate from other antipsychotics or antidepressants.
Healthy individuals (n = 6) and a patient with "... more Healthy individuals (n = 6) and a patient with "pure" primary writing tremor executed pointing and drawing movements while adopting different hand postures. The control subjects and the patient exhibited similar kinematics for most conditions. The patient displayed a severe right hand 4- to 6-Hz tremor and prolonged movements only when drawing with his normal hand posture. His tremor was manifested after a ready cue, in anticipation of a go command. The premovement tremor was abolished when the authors simply eliminated the ready cue and instructed the patient to relax and not think about drawing until he heard the go cue. Thus, the patient's writing tremor depended not only upon the writing or drawing act but also upon the hand position adopted and the intent to write, even in the absence of movement. The present results suggest that (a) similar high-level control mechanisms exist for pointing and drawing in healthy subjects and (b) the patient's deficits are compatible with a higher motor defect in central nervous system structures involved in the control of pointing and drawing movements.
Brain injury affecting the frontal motor cortex or its descending axons often causes contralatera... more Brain injury affecting the frontal motor cortex or its descending axons often causes contralateral upper extremity paresis. Although recovery is variable, the underlying mechanisms supporting favorable motor recovery remain unclear. Because the medial wall of the cerebral hemisphere is often spared following brain injury and recent functional neuroimaging studies in patients indicate a potential role for this brain region in the recovery process, we investigated the long-term effects of isolated lateral frontal motor cortical injury on the corticospinal projection (CSP) from intact, ipsilesional supplementary motor cortex (M2). After injury to the arm region of the primary motor (M1) and lateral premotor (LPMC) cortices, upper extremity recovery is accompanied by terminal axon plasticity in the contralateral CSP but not the ipsilateral CSP from M2. Furthermore, significant contralateral plasticity occurs only in lamina VII and dorsally within lamina IX. Thus, selective intraspinal sprouting transpires in regions containing interneurons, flexor-related motor neurons, and motor neurons supplying intrinsic hand muscles, which all play important roles in mediating reaching and digit movements. After recovery, subsequent injury of M2 leads to reemergence of hand motor deficits. Considering the importance of the CSP in humans and the common occurrence of lateral frontal cortex injury, these findings suggest that spared supplementary motor cortex may serve as an important therapeutic target that should be considered when designing acute and long-term postinjury patient intervention strategies aimed to enhance the motor recovery process following lateral cortical trauma. J. Comp. Neurol. 518:586 -621, 2010.
Damage to the motor cortex of one hemisphere has classically been associated with contralateral u... more Damage to the motor cortex of one hemisphere has classically been associated with contralateral upper limb paresis, but recent patient studies have identified deficits in both upper limbs. In nonhuman primates, we tested the hypothesis that the severity of ipsilesional upper limb motor impairment in the early post-injury phase depends on the volume of gray and white matter damage of the motor areas of the frontal lobe. We also postulated that substantial recovery would accompany minimal task practice and that ipsilesional limb recovery would be correlated with recovery of the contralesional limb. Gross (reaching) and fine hand motor functions were assessed for 3-12 months post-injury using two motor tests. Volumes of white and gray matter lesions were assessed using quantitative histology. Early changes in post-lesion motor performance were inversely correlated with white matter lesion volume indicating that larger lesions produced greater decreases in ipsilesional hand movement control. All monkeys showed improvements in ipsilesional hand motor skill during the post-lesion period, with reaching skill improvements being positively correlated with total lesion volume indicating larger lesions were associate with greater ipsilesional motor skill recovery. We suggest that reduced trans-callosal inhibition from the lesioned hemisphere may play a role in the observed skill improvements. Our findings show that significant ipsilesional hand motor recovery is likely to accompany injury limited to frontal motor areas. In humans, more pronounced ipsilesional motor deficits that invariably develop after stroke may, in part, be a consequence of more extensive subcortical white and gray matter damage.
On page 91, , the column of data entitled "Manipulation skill recovery ratio mDB (2nd well) was i... more On page 91, , the column of data entitled "Manipulation skill recovery ratio mDB (2nd well) was incorrect as published. The correct manipulation recovery ratios, which were used in the reported regression analyses in , are given below.
This experiment addressed the often-posed theory that age-related declines in manual dexterity re... more This experiment addressed the often-posed theory that age-related declines in manual dexterity result from diminished tactile function. We measured the timè young' subjects (n=33; mean=45 years) and`old' subjects (n=33; mean=74 years) needed to grip (thumb and index finger), lift, and transport a small metal sphere when vision was permitted and when blindfolded. Subjects began each trial by reaching for the sphere and were instructed to complete the entire task quickly. In the absence of visual information, placement of the finger and thumb for a secure grip and lift cannot be performed efficiently without tactile information. If age-related tactile changes are functionally significant for this task, then without visual information the`old' group should show a disproportionate increase in the duration of the grip and lift phase of the task compared to the`young' group. Perceptual thresholds for tactile pressure stimuli (Semmes-Weinstein filaments) confirmed well-known age-related changes. Age and vision effects were manifest mainly during the grip-lift phase (time from object contact to lift-off from its support surface), with the expected finding that the`old' group required more time thaǹ young' group, regardless of visual condition. The main finding was that the`grip-lift' duration in the`no-vision' condition was about twice the duration observed in thè vision' condition for both age groups (ratios of 2.1 and 2.3 for`young' and`old', respectively). This similar relative slowing for the two groups fails to support the hypothesis that old adults`ability to grip and lift the object was limited by changes in the availability or use of tactile information.
The purpose of this study was to determine if recovery of neurologically impaired hand function f... more The purpose of this study was to determine if recovery of neurologically impaired hand function following isolated motor cortex injury would occur without constraint of the non-impaired limb, and without daily forced use of the impaired limb. Nine monkeys (Macaca mulatta) received neurosurgical lesions of various extents to arm representations of motor cortex in the hemisphere contralateral to the preferred hand. After the lesion, no physical constraints were placed on the ipsilesional arm/hand and motor testing was carried out weekly with a maximum of 40 attempts in two fine motor tasks that required use of the contralesional hand for successful food acquisition. These motor tests were the only "forced use" of the contralesional hand. We also tested regularly for spontaneous use of the contralesional hand in a fine motor task in which either hand could be used for successful performance. This minimal intervention was sufficient to induce recovery of the contralesional hand to such a functional level that eight of the monkeys chose to use that hand on some trials when either hand could be used. Percentage use of the contralesional hand (in the task when either hand could be used) varied considerably among monkeys and was not related to lesion volume or recovery of motor skill. These data demonstrate a remarkable capacity for recovery of spontaneous use of the impaired hand following localized frontal lobe lesions. Clinically, these observations underscore the importance of therapeutic intervention to inhibit the induction of the learned nonuse phenomenon after neurological injury.
The descending spinal volleys evoked by monophasic and biphasic magnetic stimulation of the motor... more The descending spinal volleys evoked by monophasic and biphasic magnetic stimulation of the motor cortex were recorded from a bipolar electrode inserted into the cervical epidural space of four conscious human subjects. The results suggest that both phases of the biphasic pulse are capable of activating descending motor output. The pattern of recruitment of descending activity depends on the intensity of the stimulus and the relative threshold of each volley to each direction of current flow.
The mechanisms generating high- frequency (HF) and low-frequency (LF) blood pressure variability ... more The mechanisms generating high- frequency (HF) and low-frequency (LF) blood pressure variability (BPV) are reasonably well understood. However, little is known about the origin of very low-frequency (VLF) BPV. We tested the hypothesis that VLF BPV is generated by L-type Ca(2+) channel-dependent mechanisms. In conscious rats, arterial blood pressure was recorded during control conditions (n = 8) and ganglionic blockade (n = 7) while increasing doses (0.01-5.0 mg.100 micro l(-1).h(-1)) of the L-type Ca(2+) channel blocker nifedipine were infused intravenously. VLF (0.02-0.2 Hz), LF (0.2-0.6 Hz), and HF (0.6-3.0 Hz) BPV were assessed by spectral analysis of systolic blood pressure. During control conditions, nifedipine caused dose-dependent declines in VLF and LF BPV, whereas HF BPV was not affected. At the highest dose of nifedipine, VLF BPV was reduced by 86% compared with baseline, indicating that VLF BPV is largely mediated by L-type Ca(2+) channel-dependent mechanisms. VLF BPV appeared to be relatively more dependent on L-type Ca(2+) channels than LF BPV because lower doses of nifedipine were required to significantly reduce VLF BPV than to reduce LF BPV. Ganglionic blockade markedly reduced VLF and LF BPV and abolished the nifedipine-induced dose-dependent declines in VLF and LF BPV, suggesting that VLF and LF BPV require sympathetic activity to be evident. In conclusion, VLF BPV is largely mediated by L-type Ca(2+) channel-dependent mechanisms. We speculate that VLF BPV is generated by myogenic vascular responses to spontaneously occurring perturbations of blood pressure. Other factors, such as sympathetic nervous system activity, may elicit a permissive effect on VLF BPV by increasing vascular myogenic responsiveness.
to acquire raisins in the FB task. however, beginning about 3 weeks after the lesion both monkeys... more to acquire raisins in the FB task. however, beginning about 3 weeks after the lesion both monkeys spontaneously began using the impaired contralesional hand in the FB task and increased use of that hand over the next few tests. Moreover, the monkeys clearly used precision grasp to acquire the raisins in a similar manner to prelesion performances, although grasp durations were longer. although the monkeys used the contralesional hand more often than the ipsilesional hand in some postlesion testing sessions, they did not recover to use the hand as often as in prelesion testing when the preferred hand was used almost exclusively. these findings suggest that recovery of fine hand/digit motor function after localized damage to the lateral frontal motor areas in rhesus monkeys does not require forced use of the impaired hand.
• Monkeys generally learned to apply progressively larger forces to counter the stiffness of diff... more • Monkeys generally learned to apply progressively larger forces to counter the stiffness of differing springs. Although one monkey did not greatly exceed the force needed for the stiffer spring, he continued to match the force needed to open the drawer when the initial spring compression was increased.
This study investigated the relationship between hand preference and motor learning in rhesus mon... more This study investigated the relationship between hand preference and motor learning in rhesus monkeys executing fine manipulation tasks. We hypothesized that the differences in skill level of the two hands before and after task practice will strongly correlate with the magnitude of the handedness index. Subjects were male and female adult rhesus monkeys (Macaca mulatta). Preferred hand and degree of hand preference were assessed using a handedness index computed based on the percentage of initial reaches and successful acquisitions for each hand using a dexterity (Klüver) board task in which the monkeys could reach for food pellets with either hand. After assessing hand preference, monkeys were trained in two tasks using each hand without the need for restraint. These tasks were: (1) a modified movement assessment panel in which the monkey grasped and lifted carrot chips (with a central punched hole) from a flat surface and over straight and curved rods and (2) a modified dexterity ...
The Journal of neuroscience : the official journal of the Society for Neuroscience, 2003
When repetitively lifting an object with randomly varying mechanical properties, the fingertip fo... more When repetitively lifting an object with randomly varying mechanical properties, the fingertip forces reflect the previous lift. We examined the specificity of this "sensorimotor memory" by observing the effects of an isolated pinch on the subsequent lift of a known object. In this case, the pinch force was unrelated to the fingertip forces necessary to grip the object efficiently. The peak grip force used to lift the test object (4 N weight) depended on the preceding task. Compared with repetitively lifting the 4 N test object, the peak grip force was 2 N greater when a lift of the same object was preceded by a lift in which a hidden mass was attached to the object to increase the weight to 8 N. This 2 N increase in grip force also occurred when subjects lifted the 4 N test object after pinching a force transducer with a force of 8 N. Thus, similar grip forces were stored in sensorimotor memory for both tasks, and reflected subjects' use of 7.9 +/- 1.1 N to lift the 8...
We encountered a man with an unusual reaching disturbance due to a stroke in the right occipito-t... more We encountered a man with an unusual reaching disturbance due to a stroke in the right occipito-temporal cortex and subjacent white matter. We studied his behavior in detail including vision and hand control. He had a left homonymous hemianopia. In his remaining fields static visual acuity and stereoacuity were normal, but he could not detect a coherent motion signal or follow moving targets with smooth pursuit. Transduction of limb movements using an optoelectronic technique showed abnormal morphology, increased variability and markedly prolonged latencies for transport to external visual targets, yet he achieved these targets with precision. Reaching to self-bound targets, and to the remembered locations of external targets with vision blocked was 5 x faster. The findings may be explained by: (1) damage in regions homologous to areas TF and TH in the monkey, which provide visual inputs to hand and forelimb representations in the cortex; (2) injury in human regions homologous to the monkey's MT complex, with inability to use visual information on the movement of the limb due to a visual motion processing defect; and (3) disruption of visual cortical-subcortical connections mediating crucial transformations among limb and target representations.
Journal of Pharmacology and Experimental Therapeutics, 2010
The preclinical characterization of WS-50030 [7-{4-[3-(1H-inden-3-yl)propyl]piperazin-1-yl}-1,3-b... more The preclinical characterization of WS-50030 [7-{4-[3-(1H-inden-3-yl)propyl]piperazin-1-yl}-1,3-benzoxazol-2(3H)-one] is described. In vitro binding and functional studies revealed highest affinity to the D(2) receptor (D(2L) K(i), 4.0 nM) and serotonin transporter (K(i), 7.1 nM), potent D(2) partial agonist activity (EC(50), 0.38 nM; E(max), 30%), and complete block of the serotonin transporter (IC(50), 56.4 nM). Consistent with this in vitro profile, WS-50030 (10 mg/kg/day, 21 days) significantly increased extracellular 5-HT in the rat medial prefrontal cortex, short-term WS-50030 treatment blocked apomorphine-induced climbing (ID(50), 0.51 mg/kg) in a dose range that produced minimal catalepsy in mice and induced low levels of contralateral rotation in rats with unilateral substantia nigra 6-hydroxydopamine lesions (10 mg/kg i.p.), a behavioral profile similar to that of the D(2) partial agonist aripiprazole. In a rat model predictive of antipsychotic-like activity, WS-50030 and aripiprazole reduced conditioned avoidance responding by 42 and 55% at 10 mg/kg, respectively. Despite aripiprazole's reported lack of effect on serotonin transporters, long-term treatment with aripiprazole or WS-50030 reversed olfactory bulbectomy-induced hyperactivity at doses that did not reduce activity in sham-operated rats, indicating antidepressant-like activity for both compounds. Despite possessing serotonin reuptake inhibitory activity in addition to D(2) receptor partial agonism, WS-50030 displays activity in preclinical models predictive of antipsychotic- and antidepressant efficacy similar to aripiprazole, suggesting potential efficacy of WS-50030 versus positive and negative symptoms of schizophrenia, comorbid mood symptoms, bipolar disorder, major depressive disorder, and treatment-resistant depression. Furthermore, WS-50030 provides a tool to further explore how combining these mechanisms might differentiate from other antipsychotics or antidepressants.
Healthy individuals (n = 6) and a patient with "... more Healthy individuals (n = 6) and a patient with "pure" primary writing tremor executed pointing and drawing movements while adopting different hand postures. The control subjects and the patient exhibited similar kinematics for most conditions. The patient displayed a severe right hand 4- to 6-Hz tremor and prolonged movements only when drawing with his normal hand posture. His tremor was manifested after a ready cue, in anticipation of a go command. The premovement tremor was abolished when the authors simply eliminated the ready cue and instructed the patient to relax and not think about drawing until he heard the go cue. Thus, the patient's writing tremor depended not only upon the writing or drawing act but also upon the hand position adopted and the intent to write, even in the absence of movement. The present results suggest that (a) similar high-level control mechanisms exist for pointing and drawing in healthy subjects and (b) the patient's deficits are compatible with a higher motor defect in central nervous system structures involved in the control of pointing and drawing movements.
Brain injury affecting the frontal motor cortex or its descending axons often causes contralatera... more Brain injury affecting the frontal motor cortex or its descending axons often causes contralateral upper extremity paresis. Although recovery is variable, the underlying mechanisms supporting favorable motor recovery remain unclear. Because the medial wall of the cerebral hemisphere is often spared following brain injury and recent functional neuroimaging studies in patients indicate a potential role for this brain region in the recovery process, we investigated the long-term effects of isolated lateral frontal motor cortical injury on the corticospinal projection (CSP) from intact, ipsilesional supplementary motor cortex (M2). After injury to the arm region of the primary motor (M1) and lateral premotor (LPMC) cortices, upper extremity recovery is accompanied by terminal axon plasticity in the contralateral CSP but not the ipsilateral CSP from M2. Furthermore, significant contralateral plasticity occurs only in lamina VII and dorsally within lamina IX. Thus, selective intraspinal sprouting transpires in regions containing interneurons, flexor-related motor neurons, and motor neurons supplying intrinsic hand muscles, which all play important roles in mediating reaching and digit movements. After recovery, subsequent injury of M2 leads to reemergence of hand motor deficits. Considering the importance of the CSP in humans and the common occurrence of lateral frontal cortex injury, these findings suggest that spared supplementary motor cortex may serve as an important therapeutic target that should be considered when designing acute and long-term postinjury patient intervention strategies aimed to enhance the motor recovery process following lateral cortical trauma. J. Comp. Neurol. 518:586 -621, 2010.
Damage to the motor cortex of one hemisphere has classically been associated with contralateral u... more Damage to the motor cortex of one hemisphere has classically been associated with contralateral upper limb paresis, but recent patient studies have identified deficits in both upper limbs. In nonhuman primates, we tested the hypothesis that the severity of ipsilesional upper limb motor impairment in the early post-injury phase depends on the volume of gray and white matter damage of the motor areas of the frontal lobe. We also postulated that substantial recovery would accompany minimal task practice and that ipsilesional limb recovery would be correlated with recovery of the contralesional limb. Gross (reaching) and fine hand motor functions were assessed for 3-12 months post-injury using two motor tests. Volumes of white and gray matter lesions were assessed using quantitative histology. Early changes in post-lesion motor performance were inversely correlated with white matter lesion volume indicating that larger lesions produced greater decreases in ipsilesional hand movement control. All monkeys showed improvements in ipsilesional hand motor skill during the post-lesion period, with reaching skill improvements being positively correlated with total lesion volume indicating larger lesions were associate with greater ipsilesional motor skill recovery. We suggest that reduced trans-callosal inhibition from the lesioned hemisphere may play a role in the observed skill improvements. Our findings show that significant ipsilesional hand motor recovery is likely to accompany injury limited to frontal motor areas. In humans, more pronounced ipsilesional motor deficits that invariably develop after stroke may, in part, be a consequence of more extensive subcortical white and gray matter damage.
On page 91, , the column of data entitled "Manipulation skill recovery ratio mDB (2nd well) was i... more On page 91, , the column of data entitled "Manipulation skill recovery ratio mDB (2nd well) was incorrect as published. The correct manipulation recovery ratios, which were used in the reported regression analyses in , are given below.
This experiment addressed the often-posed theory that age-related declines in manual dexterity re... more This experiment addressed the often-posed theory that age-related declines in manual dexterity result from diminished tactile function. We measured the timè young' subjects (n=33; mean=45 years) and`old' subjects (n=33; mean=74 years) needed to grip (thumb and index finger), lift, and transport a small metal sphere when vision was permitted and when blindfolded. Subjects began each trial by reaching for the sphere and were instructed to complete the entire task quickly. In the absence of visual information, placement of the finger and thumb for a secure grip and lift cannot be performed efficiently without tactile information. If age-related tactile changes are functionally significant for this task, then without visual information the`old' group should show a disproportionate increase in the duration of the grip and lift phase of the task compared to the`young' group. Perceptual thresholds for tactile pressure stimuli (Semmes-Weinstein filaments) confirmed well-known age-related changes. Age and vision effects were manifest mainly during the grip-lift phase (time from object contact to lift-off from its support surface), with the expected finding that the`old' group required more time thaǹ young' group, regardless of visual condition. The main finding was that the`grip-lift' duration in the`no-vision' condition was about twice the duration observed in thè vision' condition for both age groups (ratios of 2.1 and 2.3 for`young' and`old', respectively). This similar relative slowing for the two groups fails to support the hypothesis that old adults`ability to grip and lift the object was limited by changes in the availability or use of tactile information.
The purpose of this study was to determine if recovery of neurologically impaired hand function f... more The purpose of this study was to determine if recovery of neurologically impaired hand function following isolated motor cortex injury would occur without constraint of the non-impaired limb, and without daily forced use of the impaired limb. Nine monkeys (Macaca mulatta) received neurosurgical lesions of various extents to arm representations of motor cortex in the hemisphere contralateral to the preferred hand. After the lesion, no physical constraints were placed on the ipsilesional arm/hand and motor testing was carried out weekly with a maximum of 40 attempts in two fine motor tasks that required use of the contralesional hand for successful food acquisition. These motor tests were the only "forced use" of the contralesional hand. We also tested regularly for spontaneous use of the contralesional hand in a fine motor task in which either hand could be used for successful performance. This minimal intervention was sufficient to induce recovery of the contralesional hand to such a functional level that eight of the monkeys chose to use that hand on some trials when either hand could be used. Percentage use of the contralesional hand (in the task when either hand could be used) varied considerably among monkeys and was not related to lesion volume or recovery of motor skill. These data demonstrate a remarkable capacity for recovery of spontaneous use of the impaired hand following localized frontal lobe lesions. Clinically, these observations underscore the importance of therapeutic intervention to inhibit the induction of the learned nonuse phenomenon after neurological injury.
The descending spinal volleys evoked by monophasic and biphasic magnetic stimulation of the motor... more The descending spinal volleys evoked by monophasic and biphasic magnetic stimulation of the motor cortex were recorded from a bipolar electrode inserted into the cervical epidural space of four conscious human subjects. The results suggest that both phases of the biphasic pulse are capable of activating descending motor output. The pattern of recruitment of descending activity depends on the intensity of the stimulus and the relative threshold of each volley to each direction of current flow.
The mechanisms generating high- frequency (HF) and low-frequency (LF) blood pressure variability ... more The mechanisms generating high- frequency (HF) and low-frequency (LF) blood pressure variability (BPV) are reasonably well understood. However, little is known about the origin of very low-frequency (VLF) BPV. We tested the hypothesis that VLF BPV is generated by L-type Ca(2+) channel-dependent mechanisms. In conscious rats, arterial blood pressure was recorded during control conditions (n = 8) and ganglionic blockade (n = 7) while increasing doses (0.01-5.0 mg.100 micro l(-1).h(-1)) of the L-type Ca(2+) channel blocker nifedipine were infused intravenously. VLF (0.02-0.2 Hz), LF (0.2-0.6 Hz), and HF (0.6-3.0 Hz) BPV were assessed by spectral analysis of systolic blood pressure. During control conditions, nifedipine caused dose-dependent declines in VLF and LF BPV, whereas HF BPV was not affected. At the highest dose of nifedipine, VLF BPV was reduced by 86% compared with baseline, indicating that VLF BPV is largely mediated by L-type Ca(2+) channel-dependent mechanisms. VLF BPV appeared to be relatively more dependent on L-type Ca(2+) channels than LF BPV because lower doses of nifedipine were required to significantly reduce VLF BPV than to reduce LF BPV. Ganglionic blockade markedly reduced VLF and LF BPV and abolished the nifedipine-induced dose-dependent declines in VLF and LF BPV, suggesting that VLF and LF BPV require sympathetic activity to be evident. In conclusion, VLF BPV is largely mediated by L-type Ca(2+) channel-dependent mechanisms. We speculate that VLF BPV is generated by myogenic vascular responses to spontaneously occurring perturbations of blood pressure. Other factors, such as sympathetic nervous system activity, may elicit a permissive effect on VLF BPV by increasing vascular myogenic responsiveness.
to acquire raisins in the FB task. however, beginning about 3 weeks after the lesion both monkeys... more to acquire raisins in the FB task. however, beginning about 3 weeks after the lesion both monkeys spontaneously began using the impaired contralesional hand in the FB task and increased use of that hand over the next few tests. Moreover, the monkeys clearly used precision grasp to acquire the raisins in a similar manner to prelesion performances, although grasp durations were longer. although the monkeys used the contralesional hand more often than the ipsilesional hand in some postlesion testing sessions, they did not recover to use the hand as often as in prelesion testing when the preferred hand was used almost exclusively. these findings suggest that recovery of fine hand/digit motor function after localized damage to the lateral frontal motor areas in rhesus monkeys does not require forced use of the impaired hand.
Uploads
Papers by Diane Rotella