Papers by Daniel Kim-shapiro
Nature Medicine, 2004
The blood anion nitrite contributes to hypoxic vasodilation through a heme-based, nitric oxide (N... more The blood anion nitrite contributes to hypoxic vasodilation through a heme-based, nitric oxide (NO)-generating reaction with deoxyhemoglobin and potentially other heme proteins. We hypothesized that this biochemical reaction could be harnessed for the treatment of neonatal pulmonary hypertension, an NO-deficient state characterized by pulmonary vasoconstriction, right-to-left shunt pathophysiology and systemic hypoxemia. To test this, we delivered inhaled sodium nitrite by aerosol to newborn lambs with hypoxic and normoxic pulmonary hypertension. Inhaled nitrite elicited a rapid and sustained reduction ( approximately 65%) in hypoxia-induced pulmonary hypertension, with a magnitude approaching that of the effects of 20 p.p.m. NO gas inhalation. This reduction was associated with the immediate appearance of NO in expiratory gas. Pulmonary vasodilation elicited by aerosolized nitrite was deoxyhemoglobin- and pH-dependent and was associated with increased blood levels of iron-nitrosyl-hemoglobin. Notably, from a therapeutic standpoint, short-term delivery of nitrite dissolved in saline through nebulization produced selective, sustained pulmonary vasodilation with no clinically significant increase in blood methemoglobin levels. These data support the concept that nitrite is a vasodilator acting through conversion to NO, a process coupled to hemoglobin deoxygenation and protonation, and evince a new, simple and inexpensive potential therapy for neonatal pulmonary hypertension.
Nature Chemical Biology, 2005
Nitrite has now been proposed to play an important physiological role in signaling, blood flow re... more Nitrite has now been proposed to play an important physiological role in signaling, blood flow regulation and hypoxic nitric oxide homeostasis. A recent two-day symposium at the US National Institutes of Health highlighted recent advances in the understanding of nitrite biochemistry, physiology and therapeutics.
Nature Chemical Biology, 2007
Nitrite reacts with deoxyhemoglobin to form nitric oxide (NO) and methemoglobin. Though this reac... more Nitrite reacts with deoxyhemoglobin to form nitric oxide (NO) and methemoglobin. Though this reaction is experimentally associated with NO generation and vasodilation, kinetic analysis suggests that NO should not be able to escape inactivation in the erythrocyte. We have discovered that products of the nitrite-hemoglobin reaction generate dinitrogen trioxide (N2O3) via a novel reaction of NO and nitrite-bound methemoglobin. The oxygen-bound form of nitrite-methemoglobin shows a degree of ferrous nitrogen dioxide (Fe(II)-NO2*) character, so it may rapidly react with NO to form N2O3. N2O3 partitions in lipid, homolyzes to NO and readily nitrosates thiols, all of which are common pathways for NO escape from the erythrocyte. These results reveal a fundamental heme globin- and nitrite-catalyzed chemical reaction pathway to N2O3, NO and S-nitrosothiol that could form the basis of in vivo nitrite-dependent signaling. Because the reaction redox-cycles (that is, regenerates ferrous heme) and the nitrite-methemoglobin intermediate is not observable by electron paramagnetic resonance spectroscopy, this reaction has been 'invisible' to experimentalists over the last 100 years.
Menopause, 2011
Objective-The loss of estrogen in mRen2.Lewis rats leads to an exacerbation of diastolic dysfunct... more Objective-The loss of estrogen in mRen2.Lewis rats leads to an exacerbation of diastolic dysfunction. Since specific neuronal nitric oxide synthase inhibition reverses renal damage in the same model, we assessed the effects of inhibiting neuronal nitric oxide on diastolic function, left ventricular remodeling, and the components of the cardiac nitric oxide system in ovariectomized and sham-operated mRen2.Lewis rats treated with L-VNIO (0.5 mg/kg/day for 28 days) or vehicle (saline).
Menopause: The Journal of The North American Menopause Society, 2013
mRen2.Lewis rats exhibit exacerbated increases in blood pressure, left ventricular (LV) remodelin... more mRen2.Lewis rats exhibit exacerbated increases in blood pressure, left ventricular (LV) remodeling, and diastolic impairment after the loss of estrogens. In this same model, depletion of estrogens has marked effects on the cardiac biopterin profile concomitant with suppressed nitric oxide release. With respect to the establishment of overt systolic hypertension after oophorectomy (OVX), we assessed the effects of timing long-term 17β-estradiol (E2) therapy on myocardial function, myocardial structure, and the cardiac nitric oxide system. OVX (n = 24) or sham operation (Sham; n = 13) was performed in 4-week-old female mRen2.Lewis rats. After randomization, OVX rats received E2 immediately (OVX + E2-early; n = 7), E2 at 11 weeks of age (OVX + E2-late; n = 8), or no E2 at all (OVX; n = 9). E2-early was associated with lower body weight, less hypertension-related cardiac remodeling, and decreased LV filling pressure compared with OVX rats without E2 supplementation. E2-late similarly attenuated the adverse effects of ovarian hormone loss on tissue Doppler-derived LV filling pressures and perivascular fibrosis, and significantly improved myocardial relaxation or mitral annular velocity (e'). Early and late exposures to E2 decreased dihydrobiopterin, but only E2-late yielded significant increases in cardiac nitrite concentrations. Although there are some similarities between E2-early and E2-late treatments in relation to preservation of diastolic function and cardiac structure after OVX, the lusitropic potential of E2 is most consistent with late supplementation. The cardioprotective effects of E2-late are independent of blood pressure and may have occurred through regulation of cardiac biopterins and nitric oxide production.
Medicine & Science in Sports & Exercise, 2009
Medicinal Research Reviews, 2009
In this review we consider the effects of endogenous and pharmacological levels of nitrite under ... more In this review we consider the effects of endogenous and pharmacological levels of nitrite under conditions of hypoxia. In humans, the nitrite anion has long been considered as metastable
Journal of the American Chemical Society, 2002
Hydroxyurea represents an approved treatment for sickle cell anemia and a number of cancers. Chem... more Hydroxyurea represents an approved treatment for sickle cell anemia and a number of cancers. Chemiluminescence and electron paramagnetic resonance spectroscopic studies show horseradish peroxidase catalyzes the formation of nitric oxide from hydroxyurea in the presence of hydrogen peroxide. Gas chromatographic headspace analysis and infrared spectroscopy also reveal the production of nitrous oxide in this reaction, which provides evidence for nitroxyl, the one-electron reduced form of nitric oxide. These reactions also generate carbon dioxide, ammonia, nitrite, and nitrate. None of these products form within 1 h in the absence of hydrogen peroxide or horseradish peroxidase. Electron paramagnetic resonance spectroscopy and trapping studies show the intermediacy of a nitroxide radical and a C-nitroso species during this reaction. Absorption spectroscopy indicates that both compounds I and II of horseradish peroxidase act as one-electron oxidants of hydroxyurea. Nitroxyl, generated from Angeli's salt, reacts with ferric horseradish peroxidase to produce a ferrous horseradish peroxidase-nitric oxide complex. Electron paramagnetic resonance experiments with a nitric oxide specific trap reveal that horseradish peroxidase is capable of oxidizing nitroxyl to nitric oxide. A mechanistic model that includes the observed nitroxide radical and C-nitroso compound intermediates has been forwarded to explain the observed product distribution. These studies suggest that direct nitric oxide producing reactions of hydroxyurea and peroxidases may contribute to the overall pharmacological properties of this drug.
The Journal of Organic Chemistry, 1998
RefDoc Bienvenue - Welcome. Refdoc est un service / is powered by. ...
Journal of Medicinal Chemistry, 2004
Hydroxyurea reduces the incidence of painful crises in patients with sickle cell disease and has ... more Hydroxyurea reduces the incidence of painful crises in patients with sickle cell disease and has recently been approved for the treatment of this condition. A number of in vitro studies show that the oxidation of hydroxyurea results in the formation of nitric oxide, which also has drawn considerable interest as a sickle cell disease therapy. While patients on hydroxyurea demonstrate elevated levels of nitric oxide-derived metabolites, little information regarding the site or mechanism of the in vivo conversion of hydroxyurea to nitric oxide exists. Chemiluminescence detection experiments show the ability of catalase to catalyze the formation of nitrite and nitrate from hydroxyurea. Spectroscopic studies show that the reaction of hydroxyurea and catalase in the presence of a hydrogen peroxide generating system produces a ferrous-NO catalase complex. Trapping studies indicate the intermediacy of a nitroso species during this reaction. The proposed mechanism for this conversion includes initial hydrogen peroxide-dependent oxidation of hydroxyurea by catalase to form the nitroso species, hydrolysis of this nitroso species to produce nitroxyl, and reductive nitrosylation of the ferric heme of catalase by nitroxyl to yield the ferrous-NO catalase complex. Addition of Angeli's salt, a nitroxyl donor, to ferric catalase also produces the ferrous-NO catalase complex. Spectroscopic studies show that the ferrous-NO catalase complex releases nitric oxide as judged by the oxyhemoglobin assay and an NO specific EPR specific trap. These results demonstrate nitric oxide production from the ferric catalase oxidation of nitroxyl and identify a catalase-mediated pathway as a potential source of nitric oxide production from hydroxyurea.
Journal of Medicinal Chemistry, 2003
Derivatives of N-hydroxyurea that contain an N-hydroxy group react with oxyhemoglobin to form met... more Derivatives of N-hydroxyurea that contain an N-hydroxy group react with oxyhemoglobin to form methemoglobin and variable amounts of nitrite/nitrate. Compounds with an unsubstituted -NHOH group produce the most nitrite/nitrate, which provides evidence for nitric oxide formation. The rate of reaction of these N-hydroxyurea derivatives with oxyhemoglobin correlates well with that compound's oxidation potential. Aromatic N-hydroxyureas react 25-80-fold faster with oxyhemoglobin than with N-hydroxyurea, suggesting other N-hydroxyurea analogues may be superior nitric oxide donors. Electron paramagnetic resonance spectroscopy shows that the formation of a low-spin methemoglobin-hydroxyurea complex is critical for iron nitrosyl hemoglobin formation. These results show that iron nitrosyl hemoglobin formation from the reaction of hydroxyureas and hemoglobin requires an unsubstituted -NHOH group and that the nitrogen atom of the non-N-hydroxy group must contain at least a single hydrogen atom. These results should guide the development of new hydroxyurea-based nitric oxide donors and sickle cell disease therapies.
Journal of Invertebrate Pathology, 2009
Journal of Invertebrate Pathology, 2012
Entomopathogenic nematodes respond to a variety of stimuli when foraging. Previously, we reported... more Entomopathogenic nematodes respond to a variety of stimuli when foraging. Previously, we reported a directional response to electrical fields for two entomopathogenic nematode species; specifically, when electrical fields were generated on agar plates Steinernema glaseri (a nematode that utilizes a cruiser-type foraging strategy) moved to a higher electric potential, whereas Steinernema carpocapsae, an ambush-type forager, moved to a lower potential. Thus, we hypothesized that entomopathogenic nematode directional response to electrical fields varies among species, and may be related to foraging strategy. In this study, we tested the hypothesis by comparing directional response among seven additional nematode species: Heterorhabditis bacteriophora, Heterorhabditis georgiana, Heterorhabditis indica, Heterorhabditis megidis, Steinernema feltiae, Steinernema riobrave, and Steinernema siamkayai. S. carpocapsae and S. glaseri were also included as positive controls. Heterorhabditids tend toward cruiser foraging approaches whereas S. siamkayai is an ambusher and S. feltiae and S. riobrave are intermediate. Additionally, we determined the lowest voltage that would elicit a directional response (tested in S. feltiae and S. carpocapsae), and we investigated the impact of nematode age on response to electrical field in S. carpocapsae. In the experiment measuring diversity of response among species, we did not detect any response to electrical fields among the heterorhabditids except for H. georgiana, which moved to a higher electrical potential; S. glaseri and S. riobrave also moved to a higher potential, whereas S. carpocapsae, S. feltiae, and S. siamkayai moved to a lower potential. Overall our hypothesis that foraging strategy can predict directional response was supported (in the nematodes that exhibited a response). The lowest electric potential that elicited a response was 0.1 V, which is comparable to electrical potential associated with some insects and plant roots. The level of response to electrical potential diminished with nematode age. These results expand our knowledge of electrical fields as cues that may be used by entomopathogenic nematodes for hostfinding or other aspects of navigation in the soil.
Journal of Inorganic Biochemistry, 2005
The reaction between nitrite and hemoglobin has been studied for over a century. However, recent ... more The reaction between nitrite and hemoglobin has been studied for over a century. However, recent evidence indicating nitrite is a latent vasodilatory agent that can be activated by its reaction with deoxyhemoglobin has led to renewed interest in this reaction. In this review we survey, in the context of our own recent studies, the chemical reactivity of nitrite with oxyhemoglobin, deoxyhemoglobin and methemoglobin, and place these reactions in both a physiological and pharmacological/therapeutic context.
Journal of Clinical Investigation, 2005
Journal of Clinical Investigation, 2012
Journal of Biological Chemistry, 2007
Recent studies reveal a novel role for hemoglobin as an allosterically regulated nitrite reductas... more Recent studies reveal a novel role for hemoglobin as an allosterically regulated nitrite reductase that may mediate nitric oxide (NO)-dependent signaling along the physiological oxygen gradient. Nitrite reacts with deoxyhemoglobin in an allosteric reaction that generates NO and oxidizes deoxyhemoglobin to methemoglobin. NO then reacts at a nearly diffusion-limited rate with deoxyhemoglobin to form iron-nitrosyl-hemoglobin, which to date has been considered a highly stable adduct and, thus, not a source of bioavailable NO. However, under physiological conditions of partial oxygen saturation, nitrite will also react with oxyhemoglobin, and although this complex autocatalytic reaction has been studied for a century, the interaction of the oxy- and deoxy-reactions and the effects on NO disposition have never been explored. We have now characterized the kinetics of hemoglobin oxidation and NO generation at a range of oxygen partial pressures and found that the deoxy-reaction runs in parallel with and partially inhibits the oxy-reaction. In fact, intermediates in the oxy-reaction oxidize the heme iron of iron-nitrosyl-hemoglobin, a product of the deoxy-reaction, which releases NO from the iron-nitrosyl. This oxidative denitrosylation is particularly striking during cycles of hemoglobin deoxygenation and oxygenation in the presence of nitrite. These chemistries may contribute to the oxygen-dependent disposition of nitrite in red cells by limiting oxidative inactivation of nitrite by oxyhemoglobin, promoting nitrite reduction to NO by deoxyhemoglobin, and releasing free NO from iron-nitrosyl-hemoglobin.
Journal of Biological Chemistry, 2008
Small increases in physiological nitrite concentrations have now been shown to mediate a number o... more Small increases in physiological nitrite concentrations have now been shown to mediate a number of biological responses, including hypoxic vasodilation, cytoprotection after ischemia/reperfusion, and regulation of gene and protein expression. Thus, while nitrite was until recently believed to be biologically inert, it is now recognized as a potentially important hypoxic signaling molecule and therapeutic agent. Nitrite mediates signaling through its reduction to nitric oxide, via reactions with several heme-containing proteins. In this report, we show for the first time that the mitochondrial electron carrier cytochrome c can also effectively reduce nitrite to NO. This nitrite reductase activity is highly regulated as it is dependent on pentacoordination of the heme iron in the protein and occurs under anoxic and acidic conditions. Further, we demonstrate that in the presence of nitrite, pentacoordinate cytochrome c generates bioavailable NO that is able to inhibit mitochondrial respiration. These data suggest an additional role for cytochrome c as a nitrite reductase that may play an important role in regulating mitochondrial function and contributing to hypoxic, redox, and apoptotic signaling within the cell.
Journal of Biological Chemistry, 2008
Hemoglobin A (HbA) is an allosterically regulated nitrite reductase that reduces nitrite to NO un... more Hemoglobin A (HbA) is an allosterically regulated nitrite reductase that reduces nitrite to NO under physiological hypoxia. The efficiency of this reaction is modulated by two intrinsic and opposing properties: availability of unliganded ferrous hemes and R-state character of the hemoglobin tetramer. Nitrite is reduced by deoxygenated ferrous hemes, such that heme deoxygenation increases the rate of NO generation. However, heme reactivity with nitrite, represented by its bimolecular rate constant, is greatest when the tetramer is in the R quaternary state. The mechanism underlying the higher reactivity of R-state hemes remains elusive. It can be due to the lower heme redox potential of R-state ferrous hemes or could reflect the high ligand affinity geometry of R-state tetramers that facilitates nitrite binding. We evaluated the nitrite reductase activity of unpolymerized sickle hemoglobin (HbS), whose oxygen affinity and cooperativity profile are equal to those of HbA, but whose heme iron has a lower redox potential. We now report that HbS exhibits allosteric nitrite reductase activity with competing proton and redox Bohr effects. In addition, we found that solution phase HbS reduces nitrite to NO significantly faster than HbA, supporting the thesis that heme electronics (i.e. redox potential) contributes to the high reactivity of R-state deoxy-hemes with nitrite. From a pathophysiological standpoint, under conditions where HbS polymers form, the rate of nitrite reduction is reduced compared with HbA and solution-phase HbS, indicating that HbS polymers reduce nitrite more slowly.
Journal of Biological Chemistry, 2005
The reaction rate between nitric oxide and intraerythrocytic hemoglobin plays a major role in nit... more The reaction rate between nitric oxide and intraerythrocytic hemoglobin plays a major role in nitric oxide bioavailability and modulates homeostatic vascular function. It has previously been demonstrated that the encapsulation of hemoglobin in red blood cells restricts its ability to scavenge nitric oxide. This effect has been attributed to either factors intrinsic to the red blood cell such as a physical membrane barrier or factors external to the red blood cell such as the formation of an unstirred layer around the cell. We have performed measurements of the uptake rate of nitric oxide by red blood cells under oxygenated and deoxygenated conditions at different hematocrit percentages. Our studies include stopped-flow measurements where both the unstirred layer and physical barrier potentially participate, as well as competition experiments where the potential contribution of the unstirred layer is limited. We find that deoxygenated erythrocytes scavenge nitric oxide faster than oxygenated cells and that the rate of nitric oxide scavenging for oxygenated red blood cells increases as the hematocrit is raised from 15% to 50%. Our results 1) confirm the critical biological phenomenon that hemoglobin compartmentalization within the erythrocyte reduces reaction rates with nitric oxide, 2) show that extra-erythocytic diffusional barriers mediate most of this effect, and 3) provide novel evidence that an oxygen-dependent intrinsic property of the red blood cell contributes to this barrier activity, albeit to a lesser extent. These observations may have important physiological implications within the microvasculature and for pathophysiological disruption of nitric oxide homeostasis in diseases.
Uploads
Papers by Daniel Kim-shapiro