Papers by Juanita Bustamante
Frontiers in Bioscience
TABLE OF CONTENTS 1. Abstract 2. Introduction 3. Brain NOS activity and expression 4. Nitric oxid... more TABLE OF CONTENTS 1. Abstract 2. Introduction 3. Brain NOS activity and expression 4. Nitric oxide effect on mitochondrial function 5. Role of NO in mitochondrial dysfunction and brain pathology 6. Nitric oxide in plasticity and aging 7. Perspectives 8. Acknowledgements 9. References
Journal of Bioenergetics
Mitochondria are essential for survival. Their primary function is to support aerobic respiration... more Mitochondria are essential for survival. Their primary function is to support aerobic respiration and to provide energy for intracellular metabolic pathways. Paraquat is a redox cycling agent capable of generating reactive oxygen species. The aim of the present study was to evaluate changes in cortical and striatal mitochondrial function in an experimental model of acute paraquat toxicity and to compare if the brain areas and the molecular mechanisms involved were similar to those observed after chronic exposure. Sprague-Dawley rats received paraquat (25 mg/Kg i.p.) or saline and were sacrificed after 24 h. Paraquat treatment decreased complex I and IV activity by 37 and 21 % respectively in striatal mitochondria. Paraquat inhibited striatal state 4 and state 3 KCNsensitive respiration by 80 % and 62 % respectively, indicating a direct effect on respiratory chain. An increase of 2.2 fold in state 4 and 2.3 fold in state 3 in KCN-insensitive respiration was observed in striatal mitochondria from paraquat animals, suggesting that paraquat redox cycling also consumed oxygen. Paraquat treatment increased hydrogen peroxide production (150 %), TBARS production (42 %) and cardiolipin oxidation/depletion (12 %) in striatal mitochondria. Also, changes in mitochondrial polarization was induced after paraquat treatment. However, no changes were observed in any of these parameters in cortical mitochondria from paraquat treated-animals. These results suggest that paraquat treatment induced a clear striatal mitochondrial dysfunction due to both paraquat redox cycling reactions and impairment of the mitochondrial electron transport, causing oxidative damage. As a consequence, mitochondrial dysfunction could probably lead to alterations in cellular bioenergetics.
Neuroscience, 2015
ABSTRACT
Neuroscience, 2014
Increased reactive oxygen species generation and mitochondrial dysfunction occur during ethanol h... more Increased reactive oxygen species generation and mitochondrial dysfunction occur during ethanol hangover. The aim of this work was to study the effect of melatonin pretreatment on motor performance and mitochondrial function during ethanol hangover. Male mice received melatonin solution or its vehicle in drinking water during seven days and i.p. injection with EtOH (3.8 g/kg BW) or saline at the eighth day. Motor performance and mitochondrial function were evaluated at the onset of hangover (6 hours after injection). Melatonin improved motor coordination in ethanol hangover mice. Malate-glutamate dependent oxygen uptake was decreased by ethanol hangover treatment and partially prevented by melatonin pretreatment. Melatonin alone induced decreases of 30% in state 4 succinate-dependent respiratory rates. Also, the activity of the respiratory complexes was decreased in melatonin-pretreated ethanol hangover group. Melatonin pretreatment before the hangover prevented mitochondrial membrane potential collapse and induced a 79% decrement of hydrogen peroxide production as compared with ethanol hangover group. Ethanol hangover induced a 25% decrease in NO production. Melatonin alone and as a pretreatment before ethanol hangover significantly increased NO production by nNOS and iNOS as compared with control groups. No differences were observed in nNOS protein expression, while iNOS expression was increased by melatonin group. Increased NO production by melatonin could be involved in the decrease of succinate-dependent oxygen consumption and the inhibition of complex IV observed in our study. Melatonin seems to act as an antioxidant agent in the ethanol hangover condition but also exhibited some dual effects related to NO metabolism.
Methods in Enzymology, 2002
280 In Vivo SOURCES, CELL SIGNALING [27] by multiplying by two the difference between the rate of... more 280 In Vivo SOURCES, CELL SIGNALING [27] by multiplying by two the difference between the rate of H202 formation in the presence of superoxide dismutase and that measured in the absence of superoxide dismutase. Summary The topological distribution of ...
Journal of Bioenergetics and Biomembranes, 2014
Due to the high metabolic demands of the placental tissue during gestation, we decide to analyzed... more Due to the high metabolic demands of the placental tissue during gestation, we decide to analyzed the mitochondrial bioenergetic functions in the human term placenta. Different mitochondrial morphological parameters, membrane potential and cardiolipin content were determined by flow cytometry. Oxygen uptake, hydrogen peroxide production and cytochrome P450 content, were also measured. Some apoptotic mitochondrial proteins were also analyzed by western blot. Two isolated mitochondrial fractions were observed: large/heavy and small/light with different functional characteristics. Oxygen uptake showed a respiratory control (RC) of 3.4±0.3 for the heavy mitochondria, and 1.1±0.4 for light mitochondria, indicating a respiratory dysfunction in the light fraction. Good levels of polarization were detected in the heavy fraction, meanwhile the light population showed a collapsed ΔΨ m . Increased levels of cytochrome P450, higher levels of hydrogen peroxide, and low cardiolipin content were described for the light fraction. Three pro-apoptotic proteins p53, Bax, and cytochrome c were found increased in the heavy mitochondrial fraction; and deficient in the light fraction. The heavy mitochondrial fraction showed an improved respiratory function. This mitochondrial fraction, being probably from cytotrophoblast cells showed higher content of proteins able to induce apoptosis, indicating that these cells can effectively execute an apoptotic program in the presence of a death stimulus. Meanwhile the light and small organelles probably from syncytiotrophoblast, with a low oxygen metabolism, low level of ΔΨ m , and increased hydrogen peroxide production, may not actively perform an apoptotic process due to their deficient energetic level. This study contributes to the characterization of functional parameters of human placenta mitochondria in order to understand the oxygen metabolism during the physiological process of gestation.
Neurochemistry International, 2006
The present study shows that deprenyl, a known inhibitor of monoamine oxidase B (MAO B), may gene... more The present study shows that deprenyl, a known inhibitor of monoamine oxidase B (MAO B), may generate changes in mitochondrial function. Brain submitochondrial membranes (SMP), synaptosomes and cytosolic fractions were incubated with different deprenyl concentrations and nitric oxide synthase (NOS) activity was measured. The effect of deprenyl on oxygen consumption, calcium-induced permeability transition and hydrogen peroxide (H 2 O 2 ) production rates was studied in intact mitochondria. Respiratory complexes and monoamine oxidase activities were also measured in submitochondrial membranes.
Neuroscience, 2007
Deprenyl is a selective monoamine oxidase (MAO) B inhibitor, widely used for treatment of Parkins... more Deprenyl is a selective monoamine oxidase (MAO) B inhibitor, widely used for treatment of Parkinson's disease. The present study shows that deprenyl treatment was able to improve mitochondrial function. Fourteen month old mice were injected i.p. with deprenyl (20 mg/kg) and killed 1.5 h after the administration. Different brain subcellular fractions were isolated from control and deprenyl-treated animals to evaluate the effect of deprenyl on nitric oxide synthase (NOS) activity. Oxygen consumption, hydrogen peroxide (H 2 O 2 ) production, mitochondrial membrane potential and calciuminduced permeability transition (MPT) were studied in intact mitochondria. In addition, the effect of deprenyl on respiratory complexes and MAO activities were evaluated in submitochondrial particles (SMP).
Methods in Enzymology, 2002
Note: This is a one-page preview only. Click here to download preview. ... Enable JavaScript for ... more Note: This is a one-page preview only. Click here to download preview. ... Enable JavaScript for PDF Excerpt to view it inline. ... 3A.S Lores, MF Coronel and A Boveris, Nitric Oxide 3 (1999), p. 235. ... 5J. Bustamante, G. Bersier, R. Aron Badin, C. Cymeryng, A. Parodi, ...
Pigment Cell Research, 1993
The protective role of melanin, either synthetic or derived from a metastatic lung melanoma nodul... more The protective role of melanin, either synthetic or derived from a metastatic lung melanoma nodule, was studied in terms of its ability to interact with active oxygen species (O2., H2O2, RO., ROO., etc.). Both melanins showed the ability to react with O2.. The superoxide dismutase-like activity corresponds to 21 and 10 U/mg for synthetic and tumor melanin, respectively. The latter value accounts for about 8% of the superoxide dismutase activity of cultured melanoma cells. Neither type of melanin showed catalase-like or glutathione peroxidase-like activity. Both types of melanin reacted with RO. and ROO. radicals as determined by inhibition of the lipid peroxidation reaction of rat liver homogenates. The spontaneous lipid peroxidation of rat liver homogenate was inhibited up to 90% and 80% by synthetic and tumor melanin with half-maximal effects at 2.5 and 5.5 micrograms melanin/ml, respectively. The 2,2-azo-bis-(2 amidino propane) (AAPH)-initiated lipid peroxidation of rat liver homogenate was inhibited up to 30% and 20% by synthetic and tumor melanin, with half maximal effect at 120 and 500 micrograms melanin/ml, respectively. Both types of melanin were able to protect the in vitro inactivation of glucose oxidase, which occurs in the presence of AAPH-generated radicals.
Virology, 2008
The infectious salmon anemia virus (ISAV), which belongs to the new genus Isavirus of the Orthomy... more The infectious salmon anemia virus (ISAV), which belongs to the new genus Isavirus of the Orthomyxoviridae family, is an important pathogen of the salmon farming industry. Indirect immunofluorescence assays carried out with monoclonal antibodies specific for the nucleoprotein (NP) reveal differential staining of sub-cellular compartments in infected cells. Particularly interesting was the staining of the nucleolus, which showed colocalization with nucleolin in CHSE-214, EPC and SHK-1 cells infected with ISAV. These results were confirmed by co-immunoprecipitation studies showing an interaction between NP and nucleolin. In addition, in situ hybridization carried out with probes specific for each of the 8 RNA segments of ISAV showed that the genomic as well as the anti-genomic strands were also localized in the nucleolus. These results suggest a role of the nucleolus in the replication and/or in the packaging of the ISAV genome.
Toxicology and Applied Pharmacology, 2004
Previous findings from our laboratory demonstrated that when used at low concentration (0.1 micro... more Previous findings from our laboratory demonstrated that when used at low concentration (0.1 microg ml(-1)), CsA as well as its analog PSC 833 were able to revert the MDR phenotype, while at high concentration (1 microg ml(-1)) were able to induce apoptosis. CsA induced apoptosis in leukemia cell lines sensitive (LBR-) and resistant to vincristine (LBR-V160), and doxorubicin (LBR-D160), while PSC 833 only induced apoptosis in vincristine-resistant cell line (LBR-V160). In this work, we investigated mitochondrial-associated mechanisms during CsA- and PSC 833-induced apoptosis. Mitochondrial function was evaluated by recording changes in its transmembrane potential, cytochrome c release, and caspase activation cascade. Results showed that CsA- and PSC 833-induced apoptosis was associated with mitochondrial depolarization, through potentiometric measurements with JC-1 and DiOC(6) probes. Collapse of mitochondrial potential in these cell lines after CsA treatment was followed by cytochrome c release to the cytosol, reaching an increase of 2.61-fold in LBR-, 1.98-fold in LBR-V160, and 3.01-fold in the case of LBR-D160. However, in the case of PSC 833 treatment, induction of apoptosis in LBR-V160 was associated with mitochondrial depolarization followed by a lower cytochrome c release of 1.15-fold as compared with untreated cells. Caspase 3 activation was clearly observed in LBR-, LBR-V160, and LBR-D160 after CsA treatment, while in LBR-V160, PSC 833 was less effective inducing activation of this caspase. Neither caspase 6 nor 8 activity was observed in these three cell lines. Our results suggest that during CsA- and PSC 833-induced apoptosis, mitochondrial dysfunction occurs. This is mediated through mitochondrial events, associated with an evident decrease in DeltaPsi(m), cytochrome c release and caspase 3 activation.
Toxicology and Applied Pharmacology, 2005
Arsenic trioxide, As(III), is a known environmental toxicant, co-carcinogen, and potent chemother... more Arsenic trioxide, As(III), is a known environmental toxicant, co-carcinogen, and potent chemotherapeutic agent. In model experiments with isolated rat liver mitochondria, As(III) stimulated a dose-dependent, cyclosporin A-sensitive release of cytochrome c via induction of mitochondrial permeability transition and subsequent swelling of mitochondria. Mitochondrial GSH does not seem to be a target for As(III) which, however, appears to cause oxidative modification of thiol groups of pore forming proteins, notably adenine nucleotide translocase. In mouse embryonic fibroblasts, 10 microM As(III) stimulated cytochrome c release and apoptosis via a Bax/Bak-dependent mechanism. At high concentrations (125 microM and higher), cells died by Bax/Bak-independent necrosis; at this concentration range As(III) targets mitochondria directly, particularly complex I of the mitochondrial respiratory chain. Since pyruvate, a substrate of complex I, is a predominant mitochondrial substrate in the cell, inhibition of complex I will cause mitochondrial instability and a decrease of Delta psi that facilitates permeability transition and necrotic cell death.
Toxicology, 1997
Indium arsenide and gallium arsenide are important new materials in the semiconductor industry du... more Indium arsenide and gallium arsenide are important new materials in the semiconductor industry due to their superior electronic properties in comparison with the older silicon-based materials. Animal experiments have shown that exposure to these compounds induces marked alterations in gene expression and immune response. Toxicity to the immune system has frequently been related to T and B cell apoptosis. In the present study we show that the semiconductor elements indium (In) and arsenic (As) are able to induce apoptosis in rat thymocytes in vitro. The results show that exposure to InCl, (1, 10, or 100 ,uM) or Na AsO, (0.01, 0.1, or 1 ,uM) induced DNA laddering after 6 h of incubation without compromising cell viability. These results were corroborated by flow cytometry analysis of propidium iodide-loaded cells, showing a typical high hypodiploid DNA peak in apoptotic thymocytes. Higher doses of In (1 mM) or As (lo-100 PM) induced cell death by necrosis. These data indicate that In and As can induce apoptosis and necrosis in T lymphocytes in a dose-dependent manner, which may be of relevance for their immunotoxicity. 0 1997 Elsevier Science Ireland Ltd.
PLoS ONE, 2013
Objective: To determine the effects of combined aerobic and resistance exercise training during t... more Objective: To determine the effects of combined aerobic and resistance exercise training during the second half of pregnancy on endothelial NOS expression (eNOS), nitric oxide (NO) production and oxygen metabolism in human placenta.
Photodermatology, Photoimmunology & Photomedicine, 2008
Background: Ultraviolet (UV) radiation is the major environmental harmful factor that affects hum... more Background: Ultraviolet (UV) radiation is the major environmental harmful factor that affects human skin. UVB radiation is known to be a potent inducer of reactive oxygen species (ROS) production and has also been associated with the generation of nitric oxide (NO), all of which have been implicated in various skin disorders. It is well known that mitochondria can also be affected by UVB, leading to alterations in their membrane structure and permeabilization with cytochrome c release, which consequently affects the cell function. However, the loss of keratinocyte mitochondrial function generated by UVB, as well as its kinetics, has not been characterized completely. Methods: We evaluated the effect of UVB irradiation on HaCat cells' mitochondrial function, assessed by membrane potential loss and superoxide anion (O 2 À ) production, correlating with apoptosis, p53 expression, ROS levels and NO production, 0, 6, 12, 24 and 48 h postirradiation.
Photodermatology, Photoimmunology and Photomedicine, 2005
Background: Ultraviolet (UV) radiation is the main environmental carcinogen. It is able to induce... more Background: Ultraviolet (UV) radiation is the main environmental carcinogen. It is able to induce injury in the keratinocytes, which triggers mechanisms in order to protect the skin against molecular alterations that may lead to the development of skin cancer. UVB is capable of producing genotoxic damage, directly or indirectly through reactive oxygen species, inducing DNA alterations and mutations. UVB radiation has also been associated with the generation of nitric oxide (NO), which is able to induce many physiological and physiopathological processes. The aim of the current study was to investigate the effect of UVB irradiation in hairless mice skin. Methods: We evaluated the effect of an acute dose (200 mJ/cm 2 ) of UVB irradiation correlating with histological alterations, nitric oxide synthase expression and activity, mitochondrial respiratory function, superoxide anion production and lipid peroxidation, 0, 6, 17 and 24 h post-irradiation treatment. Results: Morphological analysis showed disruption of the epidermal stratum corneum and basale after UVB
Nitric Oxide, 2002
Early stages of rat thymocyte apoptosis measured as annexin-V positive events and induced by meth... more Early stages of rat thymocyte apoptosis measured as annexin-V positive events and induced by methylprednisolone (MPS), etoposide, and thapsigargin, showed a sequential increase in nitric oxide (NO) production by mitochondrial and endoplasmic reticulum membranes. Thapsigargin induced the highest NO production, a sevenfold increase as compared with untreated thymocytes, in mitochondrial and microsomal membranes. MPS and etoposide were equally effective in increasing NO production by mitochondrial membranes by a factor of 4-5, with only a slight increase in NO production by endoplasmic reticulum membranes. Western blot analysis of both types of membrane indicated that a nitric oxide synthase (NOS) isoenzyme is present in mitochondrial membranes and reacts with antibodies to i-NOS (type II), while reactivity to antibodies to e-NOS (type III) was restricted to endoplasmic reticulum. The participation of endoplasmic reticulum during apoptosis was further determined by alterations in UDP-Glucosyltransferase (UDP-GT) and NADPH cytochrome P450 reductase. Increased UDP-GT activity was observed after thapsigargin treatment, and no changes were found after treatment with etoposide or MPS. NADPH cytochrome P450 reductase activity markedly decreased during apoptosis, being stronger after thapsigargin treatment. The latest stage of the apoptotic process was measured by caspase activities. Caspase 3 activity was markedly increased by the three apoptosis inducers; caspase 6 was only activated by MPS and etoposide, while caspase 8 was not activated by any of these inducers. It is clear that mitochondria and endoplasmic reticulum are involved in thapsigargin induced thymocyte apoptosis. Meanwhile, other thymocyte apoptotic pathways, such as those induced by MPS or etoposide, seem to centrally involve mitochondria but not endoplasmic reticulum.
Neuroscience, 2011
Brain aging has been associated with mitochondrial dysfunction and changes in nitric oxide levels... more Brain aging has been associated with mitochondrial dysfunction and changes in nitric oxide levels. The aim of this study was to evaluate the susceptibility of synaptic and non-synaptic mitochondria to aging-dependent dysfunction. State 3 respiratory rate and respiratory control were 43% and 33% decreased, respectively in brain cortex synaptosomes from 14-month-old animals, as compared with synaptosomes from 3-month-old mice. Respiratory rates were not significantly affected by aging in non-synaptic mitochondrial fractions. Mitochondrial dysfunction was associated with increases of 84% and 38% in H₂O₂ production rates in brain cortex synaptosomes and non-synaptic mitochondria, respectively, from 14-month-old mice, as compared with young animals. Synaptic mitochondria seem to be more susceptible to calcium insult in 14-month-old mice, as compared with non-synaptic mitochondria, as measured by response of both types of fractions to calcium-induced depolarization. With aging, nitric oxide (NO) production was 44% and 27% decreased both in synaptosomal and non-synaptic mitochondrial fractions, respectively. The results of this study suggest that with aging, mitochondrial function at the nerve terminals would be more susceptible to suffer alterations by the constant calcium changes occurring as a consequence of synaptic activity. Non-synaptic mitochondria would be more resistant to age-related dysfunction and oxidative damage.
Uploads
Papers by Juanita Bustamante