Papers by Alfredo Oliva-Taravilla
Energies
Agave bagasse is a residual biomass in the production of the alcoholic beverage tequila, and ther... more Agave bagasse is a residual biomass in the production of the alcoholic beverage tequila, and therefore, it is a promising raw material in the development of biorefineries using hot compressed water pretreatment (hydrothermal processing). Surfactants application has been frequently reported as an alternative to enhance monomeric sugars production efficiency and as a possibility to reduce the enzyme loading required. Nevertheless, the surfactant’s action mechanisms in the enzymatic hydrolysis is still not elucidated. In this work, hot compressed water pretreatment was applied on agave bagasse for biomass fractionation at 194 °C in isothermal regime for 30 min, and the effect of non-ionic surfactants (Tween 20, Tween 80, Span 80, and Polyethylene glycol (PEG 400)) was studied as a potential enhancer of enzymatic saccharification of hydrothermally pretreated solids of agave bagasse (AGB). It was found that non-ionic surfactants show an improvement in the conversion yield of cellulose to...
Bioresource Technology, 2015
Laccase enzymes are promising detoxifying agents during lignocellulosic bioethanol production fro... more Laccase enzymes are promising detoxifying agents during lignocellulosic bioethanol production from wheat straw. However, they affect the enzymatic hydrolysis of this material by lowering the glucose recovery yields. This work aimed at explaining the negative effects of laccase on enzymatic hydrolysis. Relative glucose recovery in presence of laccase (10IU/g substrate) with model cellulosic substrate (Sigmacell) at 10% (w/v) was almost 10% points lower (P<0.01) than in the absence of laccase. This fact could be due to an increase in the competition of cellulose binding sites between the enzymes and a slight inhibition of β-glucosidase activity. However, enzymatic hydrolysis and infrared spectra of laccase-treated and untreated wheat straw filtered pretreated residue (WS-FPR), revealed that a grafting process of phenoxy radicals onto the lignin fiber could be the cause of diminished accessibility of cellulases to cellulose in pretreated wheat straw.
Molecules, 2020
The enzymatic hydrolysis of cellulose is inhibited by non-productive adsorption of cellulases to ... more The enzymatic hydrolysis of cellulose is inhibited by non-productive adsorption of cellulases to lignin, and that is particularly problematic with lignin-rich materials such as softwood. Although conventional surfactants alleviate non-productive adsorption, using biosurfactants in softwood hydrolysis has not been reported. In this study, the effects of four biosurfactants, namely horse-chestnut escin, Pseudomonas aeruginosa rhamnolipid, and saponins from red and white quinoa varieties, on the enzymatic saccharification of steam-pretreated spruce were investigated. The used biosurfactants improved hydrolysis, and the best-performing one was escin, which led to cellulose conversions above 90%, decreased by around two-thirds lignin inhibition of Avicel hydrolysis, and improved hydrolysis of pretreated spruce by 24%. Red quinoa saponins (RQS) addition resulted in cellulose conversions above 80%, which was around 16% higher than without biosurfactants, and it was more effective than adding rhamnolipid or white quinoa saponins. Cellulose conversion improved with the increase in RQS addition up to 6 g/100 g biomass, but no significant changes were observed above that dosage. Although saponins are known to inhibit yeast growth, no inhibition of Saccharomyces cerevisiae fermentation of hydrolysates produced with RQS addition was detected. This study shows the potential of biosurfactants for enhancing the enzymatic hydrolysis of steam-pretreated softwood.
Uploads
Papers by Alfredo Oliva-Taravilla