Significant relationships were found between high-temperature days and wildland fire occurrence i... more Significant relationships were found between high-temperature days and wildland fire occurrence in the 1978-2011 period in Aragón (NE Spain). Temperature was analyzed at 850 hPa to characterize the low troposphere state, avoiding problems that affect surface reanalysis and providing regional coverage. A high-temperature day was established when air temperature was higher than 20 °C at 850 hPa. The number of these days increased significantly in the study period, increasing the frequency of adverse weather conditions that could facilitate extreme fire behavior. Specifically, these high-temperature days are more frequent in June than they used to be. The effects of those high-temperature days in wildland fire patterns were significant in terms of burned area, number of wildland fires, and average size. Fires larger than 60 ha were the subject of this study. These wildland fires have been increasing in number and size in the last years of the series. Abstract AQ2 ᅟ 1.
Extreme temperature events are known to favor large wildland fires. It is expected that fire acti... more Extreme temperature events are known to favor large wildland fires. It is expected that fire activity will increase with changing climate. This work analyzes the effects of hightemperature days on medium and large fires (those larger than 50 ha) from 1978 to 2010 in Spain. A high-temperature day was defined as being when air temperature at 850 hPa was higher than the 95th percentile of air temperature at that elevation from June to September across the years 1978-2010. Temperature at 850 hPa was chosen because it properly characterizes the state of the lower troposphere. The effects of high temperature on forest fires were remarkable and significant in terms of fire number (15 % of total large fires occurred under high-temperature days) and burned area (25 % of the total burned area occurred under high-temperature days). Fire size was also significantly higher under the 95th percentile air temperature at 850 hPa, and a large part of the largest fires in the past 20 years were under these extreme conditions. Additionally, both burned area and fire number only decreased under non-high-temperature days in the study period and not under high-temperature conditions.
Human and Ecological Risk Assessment: An International Journal, 2013
ABSTRACT The worst consequence of wildland fires is the loss of human lives, a regular phenomenon... more ABSTRACT The worst consequence of wildland fires is the loss of human lives, a regular phenomenon over the last few decades worldwide. This work analyzes all recorded wildland fires in Spain with victims between 1980 and 2010. We classified causality causes during wildland fires to study the most frequent causes of fatalities and how they were related to regions, fire size, and extreme weather conditions (i.e., high temperature days). Trends in number of both injured and killed individuals were analyzed. We observed that the annual number of victims did not decrease in the study period. Entrapment is the most frequent cause of death within the fire suppression employees. Fire size is a key factor in the occurrence of victims because 95% of fatalities in wildland fires (not counting aerial casualties) happened in fires larger than 100 ha. High temperature days also were important because 60% of entrapments were produced in this kind of days.
Extreme-temperature events have consequences for human health and mortality, forest disturbance p... more Extreme-temperature events have consequences for human health and mortality, forest disturbance patterns, agricultural productivity, and the economic repercussions of these consequences combined. To gain insight into whether extreme-temperature events are changing in light of global climate dynamics, the annual numbers of high-temperature days (those with temperatures higher than 20, 22.5, and 25 • C at 850 hPa) were analyzed across southern Europe from the years 1978 to 2012. A significant increase in the frequency of these days was found in many areas over the time period analyzed, and patterns in the spatial distribution of these changes were identified. We discuss the potential consequences of the increases in high-temperature days with regards to forest fire risk, human health, agriculture, energy demands, and some potential economic repercussions.
Significant relationships were found between high-temperature days and wildland fire occurrence i... more Significant relationships were found between high-temperature days and wildland fire occurrence in the 1978-2011 period in Aragón (NE Spain). Temperature was analyzed at 850 hPa to characterize the low troposphere state, avoiding problems that affect surface reanalysis and providing regional coverage. A high-temperature day was established when air temperature was higher than 20 °C at 850 hPa. The number of these days increased significantly in the study period, increasing the frequency of adverse weather conditions that could facilitate extreme fire behavior. Specifically, these high-temperature days are more frequent in June than they used to be. The effects of those high-temperature days in wildland fire patterns were significant in terms of burned area, number of wildland fires, and average size. Fires larger than 60 ha were the subject of this study. These wildland fires have been increasing in number and size in the last years of the series. Abstract AQ2 ᅟ 1.
Extreme temperature events are known to favor large wildland fires. It is expected that fire acti... more Extreme temperature events are known to favor large wildland fires. It is expected that fire activity will increase with changing climate. This work analyzes the effects of hightemperature days on medium and large fires (those larger than 50 ha) from 1978 to 2010 in Spain. A high-temperature day was defined as being when air temperature at 850 hPa was higher than the 95th percentile of air temperature at that elevation from June to September across the years 1978-2010. Temperature at 850 hPa was chosen because it properly characterizes the state of the lower troposphere. The effects of high temperature on forest fires were remarkable and significant in terms of fire number (15 % of total large fires occurred under high-temperature days) and burned area (25 % of the total burned area occurred under high-temperature days). Fire size was also significantly higher under the 95th percentile air temperature at 850 hPa, and a large part of the largest fires in the past 20 years were under these extreme conditions. Additionally, both burned area and fire number only decreased under non-high-temperature days in the study period and not under high-temperature conditions.
Human and Ecological Risk Assessment: An International Journal, 2013
ABSTRACT The worst consequence of wildland fires is the loss of human lives, a regular phenomenon... more ABSTRACT The worst consequence of wildland fires is the loss of human lives, a regular phenomenon over the last few decades worldwide. This work analyzes all recorded wildland fires in Spain with victims between 1980 and 2010. We classified causality causes during wildland fires to study the most frequent causes of fatalities and how they were related to regions, fire size, and extreme weather conditions (i.e., high temperature days). Trends in number of both injured and killed individuals were analyzed. We observed that the annual number of victims did not decrease in the study period. Entrapment is the most frequent cause of death within the fire suppression employees. Fire size is a key factor in the occurrence of victims because 95% of fatalities in wildland fires (not counting aerial casualties) happened in fires larger than 100 ha. High temperature days also were important because 60% of entrapments were produced in this kind of days.
Extreme-temperature events have consequences for human health and mortality, forest disturbance p... more Extreme-temperature events have consequences for human health and mortality, forest disturbance patterns, agricultural productivity, and the economic repercussions of these consequences combined. To gain insight into whether extreme-temperature events are changing in light of global climate dynamics, the annual numbers of high-temperature days (those with temperatures higher than 20, 22.5, and 25 • C at 850 hPa) were analyzed across southern Europe from the years 1978 to 2012. A significant increase in the frequency of these days was found in many areas over the time period analyzed, and patterns in the spatial distribution of these changes were identified. We discuss the potential consequences of the increases in high-temperature days with regards to forest fire risk, human health, agriculture, energy demands, and some potential economic repercussions.
Uploads
Papers by A. Cardil