Papers by Frédéric Gaspar

DNA metabarcoding provides great potential for species identification in complex samples such as ... more DNA metabarcoding provides great potential for species identification in complex samples such as food supplements and traditional medicines. Such a method would aid Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) enforcement officers to combat wildlife crime by preventing illegal trade of endangered plant and animal species. The objective of this research was to develop a multi-locus DNA metabarcoding method for forensic wildlife species identification and to evaluate the applicability and reproducibility of this approach across different laboratories. A DNA metabarcoding method was developed that makes use of 12 DNA barcode markers that have demonstrated universal applicability across a wide range of plant and animal taxa and that facilitate the identification of species in samples containing degraded DNA. The DNA metabarcoding method was developed based on Illumina MiSeq amplicon sequencing of well-defined experimental mixtures, for which a bioinformatics pipeline with user-friendly web-interface was developed. The performance of the DNA metabarcoding method was assessed in an international validation trial by 16 laboratories, in which the method was found to be highly reproducible and sensitive enough to identify species present in a mixture at 1% dry weight content. The advanced multi-locus DNA metabarcoding method assessed in this study provides reliable and detailed data on the composition of complex food products, including information on the presence of CITES-listed species. The method can provide improved resolution for species identification, while verifying species with multiple DNA barcodes contributes to an enhanced quality assurance.
In this chapter, LAB relevant to food fermentation processes have been evaluated in terms of clas... more In this chapter, LAB relevant to food fermentation processes have been evaluated in terms of classifi cation, metabolism, physiology, and applications. Their antimicrobial activities and effect on human health, as well as the products in which they are a fundamental part of the fermentation process, are discussed.

This article appeared in a journal published by Elsevier. The attached copy is furnished to the a... more This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Enterococcus faecalis is a nosocomial opportunistic pathogen, but is also found in fermented food products where it plays a fundamental role in the fermentation process. Previously, we have described the non-starter E. faecalis cheese isolate QA29b as harboring virulence genes and proven to be virulent in Galleria mellonella virulence model. In this study, we further characterized this food strain concerning traits relevant for the host-pathogen relationship. QA29b was found to belong to sequence type (ST) 72, a common ST among food isolates, and thus we consider it as a good representative of food E. faecalis strains. It demonstrated high ability to form biofilms, to adhere to epithelial cells and was readily eliminated by J774.A1 macro-phage cells. Despite carrying the cps locus associated with the capsular polysaccharide CPS 2 type, cps genes were not expressed, likely due to an IS6770 inserted in the cpsC-cpsK promoter region. This work constitutes the first study of traits important for interaction, colonization and infection in the host performed on a good representative of E. faecalis food isolates. Reported results stress the need for a reliable serotyping assay of E. faecalis, as cps genotyping may not be reliable. Overall, QA29b characterization shows that despite its virulence potential in an insect model, this food strain is readily eliminated by mammalian macrophages. Thus, fine tuned approaches combining cellular and mammalian models are needed to address and elucidate the multifactorial aspect of virulence potential associated with food isolates.

Despite the existence of various virulence factors in the Enterococcus genus, enterococcal virule... more Despite the existence of various virulence factors in the Enterococcus genus, enterococcal virulence is still a debated issue. A main consideration is the detection of the same virulence genes in strains isolated from nosocomial or community-acquired infections, and from food products. The goal of this study was to evaluate the roles of two well-characterized enterococcal virulence factors, Fsr and gelatinase, in the potential virulence of Enterococcus faecalis food strains. Virulence of unrelated Enterococcus isolates, including dairy strains carrying fsr and gelE operons, was compared in the Galleria mellonella insect model. E. faecalis dairy strains were able to kill larvae and were as virulent as strain OG1RF, one of the most widely used for virulence studies. In contrast, Enterococcus durans and Enterococcus faecium strains were avirulent or poorly virulent for G. mellonella. To evaluate the role of fsrB and gelE in virulence of E. faecalis dairy strains, both genes were deleted independently in two strains. The DfsrB and DgelE deletion mutants both produced a gelatinase-negative phenotype. Although both mutations significantly attenuated virulence in G. mellonella, the DfsrB strains were more strongly attenuated. These results agree with previous findings suggesting the involvement of fsrB in the control of other cell functions relevant to virulence. Our work demonstrates that the presence of functional fsrB, and to a lesser extent gelE, in dairy enterococci should be considered with caution.

SUMMARY The role of the development of Chrysonilia sitophila on cork slabs, during the manufactur... more SUMMARY The role of the development of Chrysonilia sitophila on cork slabs, during the manufacturing process of cork stoppers, is not clearly understood. This work describes the first results demonstrating the potential of that mould to metabolize suberin. Lipolytic activity was clearly observed in solid and liquid cultures of C. sitophila. RESUMO A função do desenvolvimento de Chrysonilia sitophila em pranchas de cortiça, durante o processo de fabrico de rolhas de cortiça, não está ainda claramente clarificada. Neste trabalho são descritos os primeiros resultados que demonstram a potencialidade daquele fungo para metabolizar suberina (um constituinte da cortiça constituido por uma parte aromática ligada a cadeias alifáticas de ácidos gordos, esterificadas ou não). A actividade lipolítica de C. sitophila foi claramente demonstrada em culturas líquidas e em culturas sólidas do fungo.
Uploads
Papers by Frédéric Gaspar