Komplex konjugált
Ez a szócikk nem tünteti fel a független forrásokat, amelyeket felhasználtak a készítése során. Emiatt nem tudjuk közvetlenül ellenőrizni, hogy a szócikkben szereplő állítások helytállóak-e. Segíts megbízható forrásokat találni az állításokhoz! Lásd még: A Wikipédia nem az első közlés helye. |
A matematikában a komplex konjugált egy komplex szám képzetes része előjelének megváltoztatásával képződik. Így a
komplex szám (ahol és valós számok) konjugáltja
A komplex konjugáltat időnként -gal jelölik. A továbbiakban a jelölés lesz, hogy elkerülhető legyen egy mátrix konjugált transzponáltjával való összecserélés. Megjegyzendő, hogy ha egy komplex számot -es vektornak tekintünk, akkor a jelölések megegyeznek.
Például:
A komplex számokat szokásosan a komplex sík egy pontjának fogják fel. A Descartes-féle koordináta-rendszerben az -tengely tartalmazza a valós számokat, az -tengely pedig az többszöröseit. Ha a komplex számot a komplex számsíkon képzeljük el, akkor a konjugált az eredeti szám x-tengelyre vett tükörképe.
Poláris alakban az konjugáltja . Ez könnyen igazolható az Euler-formulával.
Tulajdonságok
[szerkesztés]Az alábbi tulajdonságok minden és komplex számra igazak:
- , ha nem nulla
- akkor és csakis akkor, ha valós
- , ha nem nulla
Ha valós együtthatós polinom, és , akkor is teljesül. Így valós együtthatós polinomok nem-valós komplex gyökei konjugált párokat alkotnak.
A komplex számokból komplex számokba képező függvény folytonos. Noha igen egyszerű, nem analitikus, mert orientációfordító, míg az analitikus függvények lokálisan orientációtartók. Mivel bijektív és megőrzi a műveleteket, a komplex számtest automorfizmusa. Mivel a valós számokat fixen hagyja, a testbővítés Galois-csoportjának eleme. -nek pontosan két olyan automorfizmusa van, ami a valósokat fixen hagyja: az identitás és a konjugálás, azaz az említett Galois-csoport kételemű.
Általánosítás
[szerkesztés]Általában, egy test feletti algebrai elem konjugáltjainak kanonikus polinomjának gyökeit nevezzük. (A kanonikus polinom az a legalacsonyabb fokú, 1 főegyütthatós polinom, aminek gyöke.) Ez valóban általánosítja definíciónkat, hiszen az nemvalós komplex szám kanonikus polinomja
Ha algebrai felett, kanonikus polinomja elsőfokú faktorokra esik szét a felbontási testben:
ahol . A felbontási test -et fixen hagyó automorfizmusai megkaphatók az leképezések segítségével ().