נוסחת ההסתברות השלמה
מראה
נוסחת ההסתברות השלמה היא אחת הנוסחאות האלמנטריות בתורת ההסתברות. היא מאפשרת לחשב הסתברות של מאורעות מסובכים, על ידי פירוק מרחב ההסתברות למרכיבים זרים, וחישוב ההסתברות בכל אחד מהם בפני עצמו.
הנוסחה
[עריכת קוד מקור | עריכה]במקרה הכללי ביותר מפרקים את המרחב לאיחוד זר של מאורעות (אולי אפילו אינסופי, אך בן מנייה), ואז מתקיים . כאשר היא ההסתברות המותנית.
בגרסתה הפשוטה ביותר, הנוסחה מפרקת את מרחב ההסתברות כאיחוד של קבוצה A עם המשלימה שלה: . במקרה זה הנוסחה קובעת שלכל מאורע B מתקיים: .
הוכחת הנוסחה מיידית מהגדרת ההסתברות המותנית והאקסיומות של קולמוגורב למרחבי הסתברות: מכיוון ש-B היא איחוד זר של המרכיבים .