Skip to content

murufeng/EPSANet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

34 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Travis

GitHub stars GitHub forks

This repo contains the official Pytorch implementaion code.

Installation

Requirements

  • Python 3.6+
  • PyTorch 1.0+

Our environments

  • OS: Ubuntu 18.04
  • CUDA: 10.0
  • Toolkit: PyTorch 1.0
  • GPU: Titan RTX

Data preparation

Download and extract ImageNet train and val images from http://image-net.org/. The directory structure is the standard layout for the torchvision datasets.ImageFolder, and the training and validation data is expected to be in the train/ folder and val folder respectively:

/path/to/imagenet/
  train/
    class1/
      img1.jpeg
    class2/
      img2.jpeg
  val/
    class1/
      img3.jpeg
    class/2
      img4.jpeg

Usage

First, clone the repository locally:

git clone https://github.com/murufeng/EPSANet.git
cd EPSANet
  • Create a conda virtual environment and activate it:
conda create -n epsanet python=3.6 
conda activate epsanet
conda install -c pytorch pytorch torchvision

Training

To train models on ImageNet with 8 gpus run:

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python main.py -a epsanet50 --data /path/to/imagenet 

Model Zoo

Models are trained with 8 GPUs on both ImageNet and MS-COCO 2017 dataset.

Image Classification on ImageNet

Model Params(M) FLOPs(G) Top-1 (%) Top-5 (%)
EPSANet-50(Small) 22.56 3.62 77.49 93.54
EPSANet-50(Large) 27.90 4.72 78.64 94.18
EPSANet-101(Small) 38.90 6.82 78.43 94.11
EPSANet-101(Large) 49.59 8.97 79.38 94.58

Object Detection on MS-COCO 2017

Faster R-CNN

model Style Lr schd Params(M) FLOPs(G) box AP AP_50 AP_75
EPSANet-50(small) pytorch 1x 38.56 197.07 39.2 60.3 42.3
EPSANet-50(large) pytorch 1x 43.85 219.64 40.9 62.1 44.6

Mask R-CNN

model Style Lr schd Params(M) FLOPs(G) box AP AP_50 AP_75
EPSANet-50(small) pytorch 1x 41.20 248.53 40.0 60.9 43.3
EPSANet-50(large) pytorch 1x 46.50 271.10 41.4 62.3 45.3

RetinaNet

model Style Lr schd Params(M) FLOPs(G) box AP AP_50 AP_75
EPSANet-50(small) pytorch 1x 34.78 229.32 38.2 58.1 40.6
EPSANet-50(large) pytorch 1x 40.07 251.89 39.6 59.4 42.3

Instance segmentation with Mask R-CNN on MS-COCO 2017

model Params(M) FLOPs(G) AP AP_50 AP_75
EPSANet-50(small) 41.20 248.53 35.9 57.7 38.1
EPSANet-50(Large) 46.50 271.10 37.1 59.0 39.5

Releases

No releases published

Packages

No packages published

Languages