-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'feat_standalone_1.1_local' into 'develop'
Feat standalone 1.1 local See merge request joboog/LRB_shiny_app!2
- Loading branch information
Showing
11 changed files
with
259,585 additions
and
105 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,188 @@ | ||
summary_table2 <- function(df,col_n, ByFactor, ByFactorCol){ | ||
# df: inout data frame containing numeric data and a factor to summarize by | ||
# col_n: a numeric vector specifying the column numbers fo the numeric variables to subset the data frame | ||
# ByfactorName: Name of the Factor by which to summarize | ||
# ByFactorCol: Column number of the summarizing Factor | ||
|
||
# Own summary table using | ||
# | ||
library(dplyr) | ||
# initialise function to count non NA values ========================================= | ||
countValues <- function(x){ | ||
as.integer(length(!is.na(x)[!is.na(x)==TRUE])) | ||
} | ||
|
||
# df <- lRaw_new2 | ||
# ByFactor <- "SamplePoint" | ||
# ByFactorCol <- 1 | ||
# col_n <- 4:length(colnames(lRaw_new2)) | ||
|
||
# compute summary stats ============================================================= | ||
df <- df[,c(ByFactorCol,col_n)] | ||
# compute means values | ||
means <- df %>% group_by_(ByFactor) %>% summarise_all(funs(mean), na.rm=TRUE) | ||
means <- cbind(means[,1], round(select(means, -1), digits = 1)) | ||
means <- format(means, digits = 1, nsmall = 1) | ||
colnames(means) <- c(ByFactor, colnames(select(means, -1))) | ||
|
||
# compute standard deviations | ||
sds <- df %>% group_by_(ByFactor) %>% summarise_all(funs(sd), na.rm=TRUE) | ||
sds <- cbind(sds[,1], round(select(sds, -1), digits = 1)) | ||
sds <- format(sds, digits = 1, nsmall = 1) | ||
colnames(sds) <- c(ByFactor, colnames(select(sds, -1))) | ||
# set value of first columnof sds to NA, just to make the table look better in the end | ||
sds[,1] <- NA | ||
|
||
# count non NA values | ||
counts <- df %>% group_by_(ByFactor) %>% summarise_all(funs(countValues)) | ||
counts <- format(as.data.frame(counts), digits = 0, nsmall = 0) | ||
colnames(counts) <- c(ByFactor, colnames(select(counts, -1))) | ||
counts[,1] <- NA | ||
|
||
|
||
|
||
# creates a summary table with means values ========================================== | ||
# standards deviations and counts | ||
|
||
# create the data frame | ||
df1 <- rbind(means[1,], sds[1,], counts[1,]) | ||
|
||
# if more than one SamplePoint, combine mean values, standard deviations, counts using a loop | ||
if (length(means[,1])>1) { | ||
for (i in 2:length(means[,1])){ | ||
df1 <- rbind(df1, means[i,], sds[i,], counts[i,]) | ||
} | ||
} | ||
|
||
# create a parameter vector which will be implemented in the summary table | ||
Parameter <- rep(c("Mean", "StDev", "Count"), times=length(means[,1])) | ||
df1 <- cbind(df1,Parameter) | ||
# reorder df1, put parameters into 2nd column | ||
df1 <- df1[,c(1,length(df1),3:length(df1)-1)] | ||
# rename ByFactorColumn | ||
|
||
} | ||
|
||
|
||
# =============================================================================== | ||
summary_table2_old <- function(df,col_n, ByFactor, ByFactorCol){ | ||
# df: inout data frame containing numeric data and a factor to summarize by | ||
# col_n: a numeric vector specifying the column numbers fo the numeric variables to subset the data frame | ||
# ByfactorName: Name of the Factor by which to summarize | ||
# ByFactorCol: Column number of the summarizing Factor | ||
|
||
# Own summary table using | ||
# | ||
library(dplyr) | ||
# initialise function to count non NA values ========================================= | ||
countValues <- function(x){ | ||
as.integer(length(!is.na(x)[!is.na(x)==TRUE])) | ||
} | ||
|
||
# df <- lRaw_new2 | ||
# ByFactor <- "SamplePoint" | ||
# ByFactorCol <- 1 | ||
# col_n <- 3:length(colnames(lRaw_new2)) | ||
|
||
# compute summary stats ============================================================= | ||
# compute means values | ||
means <- aggregate(df[,col_n], by=list(ByFactor=df[,ByFactorCol]), FUN=mean, na.rm=TRUE, simplify = TRUE) | ||
means <- cbind(means[,1], round(select(means, -ByFactor), digits = 1)) #means[,2:length(means[1,])],digits=1)) | ||
means <- format(means, digits = 1, nsmall = 1) | ||
colnames(means) <- c(ByFactor, colnames(select(means, -1))) #(means)[2:length(means)]) | ||
# compute standard deviations | ||
sds <- aggregate(df[,col_n], by=list(ByFactor=df[,ByFactorCol]), FUN=sd, na.rm=TRUE, simplify = TRUE) | ||
sds <- cbind(sds[,1], round(select(sds, -ByFactor),digits=1)) | ||
sds <- format(sds, digits = 1, nsmall = 1) | ||
colnames(sds) <- c(ByFactor, colnames(select(sds, -1))) | ||
# set value of first columnof sds to NA, just to make the table look better in the end | ||
sds[,1] <- NA | ||
# count no NA values | ||
counts <- aggregate(df[,col_n], by=list(ByFactor=df[,ByFactorCol]), FUN=countValues, simplify = TRUE) | ||
counts <- format(counts, digits = 0, nsmall = 0) | ||
colnames(counts) <- c(ByFactor, colnames(select(counts, -1))) | ||
counts[,1] <- NA | ||
|
||
|
||
|
||
# creates a summary table with means values ========================================== | ||
# standards deviations and counts | ||
|
||
# create the data frame | ||
df1 <- rbind(means[1,], sds[1,], counts[1,]) | ||
|
||
# if more than one SamplePoint, combine mean values, standard deviations, counts using a loop | ||
if (length(means[,1])>1) { | ||
for (i in 2:length(means[,1])){ | ||
df1 <- rbind(df1, means[i,], sds[i,], counts[i,]) | ||
} | ||
} | ||
|
||
# create a parameter vector which will be implemented in the summary table | ||
Parameter <- rep(c("Mean", "StDev", "Count"), times=length(means[,1])) | ||
df1 <- cbind(df1,Parameter) | ||
# reorder df1, put parameters into 2nd column | ||
df1 <- df1[,c(1,length(df1),3:length(df1)-1)] | ||
# rename ByFactorColumn | ||
|
||
} | ||
|
||
|
||
# ================================================================================= | ||
|
||
|
||
summary_table3 <- function(df,col_n, ByFactor, ByFactorCol){ | ||
# input: data frame containing numeric data and a factor to summarize by | ||
# col_n: a vector specifying the column numbers to subset the data frame | ||
# ByfactorName: Name of the Factor by which to summarize | ||
# ByFactorCol: Column number of the summarizing Factor | ||
|
||
# Own summary table using | ||
# | ||
# initialise function to count values ========================================= | ||
countValues <- function(x){ | ||
as.integer(length(!is.na(x)[!is.na(x)==TRUE])) | ||
} | ||
|
||
# ============================================================================= | ||
# compute means values | ||
means <- aggregate(df[,col_n], by=list(ByFactor=df[,ByFactorCol]), FUN=mean, na.rm=TRUE, simplify = TRUE) | ||
means <- cbind(means[,1], round(means[,2:length(means),1])) | ||
means <- format(means, digits = 1, nsmall = 1) | ||
colnames(means) <- c(ByFactor, colnames(means)[2:length(means)]) | ||
# compute standard deviations | ||
sds <- aggregate(df[,col_n], by=list(ByFactor=df[,ByFactorCol]), FUN=sd, na.rm=TRUE, simplify = TRUE) | ||
sds <- cbind(sds[,1], round(sds[,2:length(sds)],1)) | ||
sds <- format(sds, digits = 1, nsmall = 1) | ||
colnames(sds) <- c(ByFactor, colnames(sds)[2:length(sds)]) | ||
# set value of first columnof sds to NA, just to make the table look better in the end | ||
sds[,1] <- NA | ||
# count no NA values | ||
counts <- aggregate(df[,col_n], by=list(ByFactor=df[,ByFactorCol]), FUN=countValues, simplify = TRUE) | ||
count <- format(counts, digits = 0, nsmall = 0) | ||
colnames(counts) <- c(ByFactor, colnames(counts)[2:length(counts)]) | ||
counts[,1] <- NA | ||
# =============================================================================== | ||
|
||
|
||
# creates a summary table with means values, | ||
# standards deviations and counts | ||
# ========================================== | ||
# create the data frame | ||
df1 <- rbind(means[1,], sds[1,], counts[1,]) | ||
# combine mean values, standard deviations, counts using a loop | ||
for (i in 2:length(means[,1])){ | ||
df1 <- rbind(df1, means[i,], sds[i,], counts[i,]) | ||
} | ||
# create a parameter vector which will be implemented in the summary table | ||
Parameter <- rep(c("Mean", "StDev", "Count"), times=length(means[,1])) | ||
df1 <- cbind(df1,Parameter) | ||
# reorder df1, put parameters into 2nd column | ||
df1 <- df1[,c(1,length(df1),3:length(df1)-1)] | ||
# rename ByFactorColumn | ||
|
||
} | ||
# ================================================================================= | ||
|
||
|
||
|
Oops, something went wrong.