This Truffle language exposes GPUs to the polyglot GraalVM. The goal is to
-
make data exchange between the host language and the GPU efficient without burdening the programmer.
-
allow programmers to invoke existing GPU kernels from their host language.
Supported and tested GraalVM languages:
- Python
- JavaScript/NodeJS
- Ruby
- R
- Java
- C and Rust through the Graal Sulong Component
A description of grCUDA and its the features can be found in the grCUDA documentation.
The bindings documentation contains a tutorial that shows how to bind precompiled kernels to callables, compile and launch kernels.
Additional Information:
- grCUDA: A Polyglot Language Binding for CUDA in GraalVM. NVIDIA Developer Blog, November 2019.
- grCUDA: A Polyglot Language Binding. Presentation at Oracle CodeOne 2019, September 2019.
- Simplifying GPU Access. Presentation at NVIDIA GTC 2020, March 2020.
grCUDA can be used in the binaries of the GraalVM languages (lli
, graalpython
,
js
, R
, and ruby)
. The JAR file containing grCUDA must be appended to the classpath
or copied into jre/languages/grcuda
of the Graal installation. Note that --jvm
and --polyglot
must be specified in both cases as well.
The following example shows how to create a GPU kernel and two device arrays in JavaScript (NodeJS) and invoke the kernel:
// build kernel from CUDA C/C++ source code
const kernelSource = `
__global__ void increment(int *arr, int n) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < n) {
arr[idx] += 1;
}
}`
const cu = Polyglot.eval('grcuda', 'CU') // get grCUDA namespace object
const incKernel = cu.buildkernel(
kernelSource, // CUDA kernel source code string
'increment', // kernel name
'pointer, sint32') // kernel signature
// allocate device array
const numElements = 100
const deviceArray = cu.DeviceArray('int', numElements)
for (let i = 0; i < numElements; i++) {
deviceArray[i] = i // ... and initialize on the host
}
// launch kernel in grid of 1 block with 128 threads
incKernel(1, 128)(deviceArray, numElements)
// print elements from updated array
for (const element of deviceArray) {
console.log(element)
}
$GRAALVM_DIR/bin/node --polyglot --jvm example.js
1
2
...
100
The next example shows how to launch an existing compiled GPU kernel from Python. The CUDA kernel
__global__ void increment(int *arr, int n) {
auto idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < n) {
arr[idx] += 1;
}
}
is compiled using nvcc --cubin
into a cubin file. The kernel function can be loaded from the cubin and bound to a callable object in the host language, here Python.
import polyglot
num_elements = 100
cu = polyglot.eval(language='grcuda', string='CU')
device_array = cu.DeviceArray('int', num_elements)
for i in range(num_elements):
device_array[i] = i
# bind to kernel from binary
inc_kernel = cu.bindkernel('kernel.cubin',
'cxx increment(arr: inout pointer sint32, n: sint32)')
# launch kernel as 1 block with 128 threads
inc_kernel(1, 128)(device_array, num_elements)
for i in range(num_elements):
print(device_array[i])
nvcc --cubin --generate-code arch=compute_75,code=sm_75 kernel.cu
$GRAALVM_DIR/bin/graalpython --polyglot --jvm example.py
1
2
...
100
For more details on how to invoke existing GPU kernels, see the Documentation on polyglot kernel launches.
grCUDA can be downloaded as a binary JAR from grcuda/releases and manually copied into a GraalVM installation.
-
Download GraalVM CE 20.0.0 for Linux
graalvm-ce-java8-linux-amd64-20.0.0.tar.gz
from GitHub and untar it in your installation directory.cd <your installation directory> tar xfz graalvm-ce-java8-linux-amd64-20.0.0.tar.gz export GRAALVM_DIR=`pwd`/graalvm-ce-java8-20.0.0
-
Download the grCUDA JAR from grcuda/releases
cd $GRAALVM_DIR/jre/languages mkdir grcuda cp <download folder>/grcuda-0.1.0.jar grcuda
-
Test grCUDA in Node.JS from GraalVM.
cd $GRAALVM_DIR/bin ./node --jvm --polyglot > arr = Polyglot.eval('grcuda', 'int[5]') [Array: null prototype] [ 0, 0, 0, 0, 0 ]
-
Download other GraalVM languages.
cd $GRAAL_VM/bin ./gu available ./gu install python ./gu install R ./gu install ruby
grCUDA requires the mx build tool. Clone the mx
repository and add the directory into $PATH
, such that the mx
can be invoked from
the command line.
Build grCUDA and the unit tests:
cd <directory containing this README>
mx build
Note that this will also checkout the graal repository.
To run unit tests:
mx unittest com.nvidia