Aller au contenu

Constante de Cahen

Un article de Wikipédia, l'encyclopédie libre.

En mathématiques, la constante de Cahen est définie comme une somme infinie de fractions unitaires, avec des signes alternés, à partir de la suite de Sylvester  :

.

En regroupant ces fractions deux par deux, on peut aussi voir cette constante comme la somme des inverses des termes d'indices pairs de la suite de Sylvester ; cette représentation de la constante de Cahen est son développement par l'algorithme glouton pour les fractions égyptiennes :

.

Son nom vient d'Eugène Cahen, qui est le premier à l'avoir formulée et étudiée[1].

C'est un nombre transcendant[2] de la classe S[3] et son développement en fraction continue est[2],[4] , où la suite est définie par récurrence par et .

Notes et références

[modifier | modifier le code]
(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Cahen's constant » (voir la liste des auteurs).
  1. E. Cahen, « Note sur un développement des quantités numériques, qui présente quelque analogie avec celui en fractions continues », Nouv. Ann. Math., 3e série, vol. 10,‎ , p. 508-514 (lire en ligne).
  2. a et b (en) J. Les Davison et Jeffrey O. Shallit, « Continued fractions for some alternating series », Monatsh. Math., vol. 111, no 2,‎ , p. 119-126 (lire en ligne).
  3. (en) Yann Bugeaud, Approximation by Algebraic Numbers, Cambridge University Press, (ISBN 978-0-511-54288-6, lire en ligne), p. 72.
  4. Suite OEISA006280 de l'OEIS.