Papers by Aditya Sundararajan
The power system forms the backbone of a modern society, and its security is of paramount importa... more The power system forms the backbone of a modern society, and its security is of paramount importance to nation's economy. However, the power system is vulnerable to intelligent attacks by attackers who have enough knowledge of how the power system is operated, monitored and controlled. This paper proposes a game theoretic approach to explore and evaluate strategies for the defender to protect the power systems against such intelligent attacks. First, a risk assessment is presented to quantify the physical impacts inflicted by attacks. Based upon the results of the risk assessment, this paper represents the interactions between the attacker and the defender by extending the current zero-sum game model to more generalized game models for diverse assumptions concerning the attacker's motivation. The attacker and defender's equilibrium strategies are attained by solving these game models. In addition, a numerical illustration is demonstrated to warrant the theoretical outcomes.
Smart Grid metering and control applications require fast and secured two-way communication. IEEE... more Smart Grid metering and control applications require fast and secured two-way communication. IEEE 802.15.4 based ZigBee is one of the leading communication protocols for Advanced Metering Infrastructure (AMI). In North America, ZigBee supports two distinguished frequency bands - 915 MHz and 2.4 GHz. In Home Area Network (HAN) of AMI, home appliances communicate with smart meters whereas the communication among neighboring meters is termed as Neighborhood Area Network (NAN). In this study, optimum frequency bands for NAN and HAN communication have been proposed based on the throughput, reliability and scalability. We evaluated and compared the performance of bands 868/915 MHz and 2.4 GHz for AMI context. The solution also meets the requirements for Smart Grid communication standards as recommended by the US Department of Energy (DOE).
2015 12th International Conference on Information Technology - New Generations, 2015
In smart cities, advanced metering infrastructure (AMI) of the smart grid facilitates automated m... more In smart cities, advanced metering infrastructure (AMI) of the smart grid facilitates automated metering, control and monitoring of power distribution by employing a wireless network. Due to this wireless nature of communication, there exist potential threats to the data privacy in AMI. Decoding the energy consumption reading, injecting false data/command signals and jamming the networks are some hazardous measures against this technology. Since a smart meter possesses limited memory and computational capability, AMI demands a light, but robust security scheme. In this paper, we propose a localization-based key management system for meter data encryption. Data are encrypted by the key associated with the coordinate of the meter and a random key index. The encryption keys are managed and distributed by a trusted third party (TTP). Localization of the meter is proposed by a method based on received signal strength (RSS) using the maximum likelihood estimator (MLE). The received packets are decrypted at the control center with the key mapped with the key index and the meter's coordinates. Additionally, we propose the k-nearest neighbors (kNN) algorithm for node/meter authentication, capitalizing further on data transmission security. Finally, we evaluate the security strength of a data packet numerically for our method.
Uploads
Papers by Aditya Sundararajan