Pellen ekuazioa :
x
2
−
p
y
2
=
1
{\displaystyle x^{2}-py^{2}=1}
, bateragarria da,
p
{\displaystyle p}
edozein zenbaki arrunt eta ez karratu izanik. Pell-en ekuazioak beti onartzen du ebazpen neutroa:
x
=
1
,
y
=
0
{\displaystyle x=1,y=0}
, horregatik bateragarria dela diogunean, neutroa ez den ebazpen baten existentziaz mintzo gara.
Peter Gustav Lejeune Dirichlet (1805-1859)
Pell-en ekuazioa bateragarria dela frogatuko da,
p
{\displaystyle p}
edozein zenbaki arrunt eta ez karratu izanik. Honetarako Dirichlet -en bidea jarraituz: Lema bat, korolario bat eta proposizio bat frogatuz.
Oharra: Notazioetan,
[
a
,
b
]
{\displaystyle [a,b]}
bitartea erabiliko da,
[
a
,
b
]
∩
Z
{\displaystyle [a,b]\cap \mathbb {Z} }
multzoa adierazteko, eta
[
x
]
{\displaystyle [x]}
, berriz,
x
{\displaystyle x}
-ren zati osoa adierazteko.
ℵ
{\displaystyle \aleph }
, aleph zero sinboloak infinitu kontagarria adierazten du, eta
|
A
|
{\displaystyle \left\vert A\right\vert }
-k,
A
{\displaystyle A}
multzoaren elementu kopurua.
Zenbaki arrazionalak:
Q
=
{
p
q
:
p
∈
Z
,
q
∈
N
}
{\displaystyle \mathbb {Q} =\{{\frac {p}{q}}:p\in \mathbb {Z} ,q\in \mathbb {N} \}}
α
∈
R
{\displaystyle \alpha \in \mathbb {R} }
emanik,
∀
n
∈
N
{\displaystyle \forall n\in \mathbb {N} }
-rentzat
∃
p
q
∈
Q
{\displaystyle \exists {\frac {p}{q}}\in \mathbb {Q} }
non
|
α
−
p
q
|
<
1
q
⋅
n
{\displaystyle \left\vert \alpha -{\frac {p}{q}}\right\vert <{\frac {1}{q\cdot n}}}
eta
q
∈
[
1
,
n
]
{\displaystyle q\in [1,n]}
.
p
q
{\displaystyle {\frac {p}{q}}}
zenbaki arrazionala,
p
∈
Z
{\displaystyle {p}\in \mathbb {Z} }
eta
q
∈
N
{\displaystyle {q}\in \mathbb {N} }
suposatzen da orokortasuna galdu gabe.
n
∈
N
{\displaystyle {n}\in \mathbb {N} }
emanik, ondorengo segida eraikiko da:
x
j
=
j
α
−
[
j
α
]
{\displaystyle x_{j}=j\alpha -[j\alpha ]}
non
j
∈
[
0
,
n
]
{\displaystyle j\in [0,n]}
.
x
j
=
j
α
−
[
j
α
]
∈
[
0
,
1
)
=
⋃
k
=
0
n
−
1
[
k
n
,
k
+
1
n
)
{\displaystyle x_{j}=j\alpha -[j\alpha ]\in [0,1{\bigr )}=\bigcup _{k=0}^{n-1}[{\frac {k}{n}},{\frac {k+1}{n}}{\bigr )}}
,
∀
j
∈
[
0
,
n
]
{\displaystyle \forall j\in [0,n]}
-rentzat.
Honela
n
+
1
{\displaystyle n+1}
zenbaki ,
n
{\displaystyle n}
bitarte disjuntutan banatu dira, eta usategi printzipioa erabiliz, existitzen da bitarte bat, gutsienez bi zenbaki bere baitan dituena.
∃
r
,
s
∈
[
0
,
n
]
{\displaystyle \exists {r},{s}\in [0,n]}
, eta
r
<
s
{\displaystyle {r}<{s}}
non
|
x
r
−
x
s
|
<
1
n
{\displaystyle \left\vert x_{r}-x_{s}\right\vert <{\frac {1}{n}}}
|
x
r
−
x
s
|
=
|
r
α
−
s
α
−
(
[
r
α
]
−
[
s
α
]
)
|
=
{\displaystyle \left\vert x_{r}-x_{s}\right\vert =\left\vert r\alpha -s\alpha -([r\alpha ]-[s\alpha ])\right\vert =}
(
r
−
s
)
|
α
−
[
r
α
]
−
[
s
α
]
r
−
s
|
<
1
n
{\displaystyle (r-s)\left\vert \alpha -{\frac {[r\alpha ]-[s\alpha ]}{r-s}}\right\vert <{\frac {1}{n}}}
r
,
s
∈
[
0
,
n
]
{\displaystyle {r},{s}\in [0,n]}
, eta
r
<
s
{\displaystyle {r}<{s}}
⇒
1
≤
r
−
s
≤
n
{\displaystyle \Rightarrow 1\leq r-s\leq n}
. Honela
q
=
r
−
s
{\displaystyle q=r-s}
eta
p
=
[
r
α
]
−
[
s
α
]
{\displaystyle p=[r\alpha ]-[s\alpha ]}
aukeratuz.
∃
p
q
∈
Q
{\displaystyle \exists {\frac {p}{q}}\in Q}
non
|
α
−
p
q
|
<
1
q
⋅
n
{\displaystyle \left\vert \alpha -{\frac {p}{q}}\right\vert <{\frac {1}{q\cdot n}}}
eta
q
∈
[
1
,
n
]
{\displaystyle q\in [1,n]}
.
α
∈
R
−
Q
{\displaystyle \alpha \in \mathbb {R} -\mathbb {Q} }
eta
ℜ
=
{
p
q
∈
Q
:
|
α
−
p
q
|
<
1
q
2
}
{\displaystyle \Re =\left\{{\frac {p}{q}}\in \mathbb {Q} :\left\vert \alpha -{\frac {p}{q}}\right\vert <{\frac {1}{q^{2}}}\right\}}
⇒
|
ℜ
|
=
ℵ
{\displaystyle \Rightarrow \left\vert \Re \right\vert =\aleph }
p
=
[
α
]
,
q
=
1
{\displaystyle p=\left[\alpha \right],q=1}
, hartuaz
|
α
−
[
α
]
1
|
<
1
1
2
⇒
[
α
]
∈
ℜ
{\displaystyle \left\vert \alpha -{\frac {[\alpha ]}{1}}\right\vert <{\frac {1}{1^{2}}}\Rightarrow [\alpha ]\in \Re }
. Ondorioz
ℜ
≠
∅
{\displaystyle \Re \neq \emptyset }
.
Absurdura bideratuz suposa bedi,
|
ℜ
|
<
ℵ
{\displaystyle \left\vert \Re \right\vert <\aleph }
dela (finitua).
|
ℜ
|
<
ℵ
⇒
∃
ϵ
=
M
i
n
{
|
α
−
r
|
:
r
∈
ℜ
}
{\displaystyle \left\vert \Re \right\vert <\aleph \Rightarrow \exists \epsilon =Min\left\{\left\vert \alpha -r\right\vert :r\in \Re \right\}}
Zenbaki arrazionalen arkimedesen ezaugarriagatik:
∃
n
∈
N
:
1
n
<
ϵ
{\displaystyle \exists n\in \mathbb {N} :{\frac {1}{n}}<\epsilon }
.
α
{\displaystyle \alpha }
eta
n
{\displaystyle n}
zenbakiei, aurreko Lema aplikatuz:
∃
p
q
∈
Q
:
|
α
−
p
q
|
<
1
q
⋅
n
;
q
∈
[
1
,
n
]
{\displaystyle \exists {\frac {p}{q}}\in \mathbb {Q} :\left\vert \alpha -{\frac {p}{q}}\right\vert <{\frac {1}{q\cdot n}};q\in [1,n]}
Ondorioz,
|
α
−
p
q
|
<
1
q
⋅
n
≤
1
n
<
ϵ
⇒
p
q
∉
ℜ
{\displaystyle \left\vert \alpha -{\frac {p}{q}}\right\vert <{\frac {1}{q\cdot n}}\leq {\frac {1}{n}}<\epsilon \Rightarrow {\frac {p}{q}}\not \in \Re }
Eta bestalde
|
α
−
p
q
|
<
1
q
⋅
n
≤
1
q
2
⇒
p
q
∈
ℜ
{\displaystyle \left\vert \alpha -{\frac {p}{q}}\right\vert <{\frac {1}{q\cdot n}}\leq {\frac {1}{q^{2}}}\Rightarrow {\frac {p}{q}}\in \Re }
Absurdua denez ezinezkoa da
ℜ
{\displaystyle \Re }
finitua izatea
⇒
|
ℜ
|
=
ℵ
{\displaystyle \Rightarrow \left\vert \Re \right\vert =\aleph }
p
{\displaystyle p}
zenbaki arrunt eta ez karratua bada, Pell-en ekuazioak:
x
2
−
p
y
2
=
1
{\displaystyle x^{2}-py^{2}=1}
, badu ebazpen ez neutro bat.
p
{\displaystyle p}
zenbaki arrunt eta ez karratua bada,
p
{\displaystyle {\sqrt {p}}}
ez da zenbaki arrazionala:
p
∈
R
−
Q
{\displaystyle {\sqrt {p}}\in \mathbb {R} -\mathbb {Q} }
.
α
=
p
∈
R
−
Q
{\displaystyle \alpha ={\sqrt {p}}\in \mathbb {R} -\mathbb {Q} }
zenbakiari aurreko korolarioa aplikatuz,
|
ℜ
|
=
ℵ
{\displaystyle \left\vert \Re \right\vert =\aleph }
, zeinetan:
ℜ
=
{
x
y
∈
Q
:
|
p
−
x
y
|
<
1
y
2
}
{\displaystyle \Re =\left\{{\frac {x}{y}}\in \mathbb {Q} :\left\vert {\sqrt {p}}-{\frac {x}{y}}\right\vert <{\frac {1}{y^{2}}}\right\}}
.
Ondorengo emaitza frogatuko da hiru pausotan:
∃
m
∈
Z
;
|
m
|
<
1
+
2
p
{\displaystyle \exists m\in Z;\left\vert m\right\vert <1+2{\sqrt {p}}}
non
|
A
m
|
=
ℵ
{\displaystyle \left\vert {\mathcal {A_{m}}}\right\vert =\aleph }
.
Zeinetan
A
m
=
{
(
x
,
y
)
∈
N
×
N
:
|
x
2
−
p
y
2
|
=
m
}
{\displaystyle {\mathcal {A}}_{m}=\{(x,y)\in N\times N:\left\vert x^{2}-py^{2}\right\vert =m\}}
multzoa den.
Bat :
|
ℜ
1
|
=
ℵ
{\displaystyle \left\vert \Re _{1}\right\vert =\aleph }
, forgatuko da, zeinetan
ℜ
1
=
{
x
y
∈
Q
:
|
x
2
−
y
2
p
|
<
1
+
2
p
}
{\displaystyle \Re _{1}=\left\{{\frac {x}{y}}\in \mathbb {Q} :\left\vert x^{2}-y^{2}p\right\vert <1+2{\sqrt {p}}\right\}}
. Ondorengo desberdintzak betetzen dituzte
ℜ
{\displaystyle \Re }
multzoko zatikiek:
x
y
∈
ℜ
{\displaystyle {\frac {x}{y}}\in \Re }
emanik:
|
p
−
x
y
|
<
1
y
2
⇔
|
y
p
−
x
|
<
1
y
{\displaystyle \left\vert {\sqrt {p}}-{\frac {x}{y}}\right\vert <{\frac {1}{y^{2}}}\Leftrightarrow \left\vert y{\sqrt {p}}-x\right\vert <{\frac {1}{y}}}
, eta desberdintza triangeluarra erabiliz:
|
y
p
+
x
|
=
|
2
y
p
+
x
−
y
p
|
≤
{\displaystyle \left\vert y{\sqrt {p}}+x\right\vert =\left\vert 2y{\sqrt {p}}+x-y{\sqrt {p}}\right\vert \leq }
2
y
p
+
|
x
−
y
p
|
<
1
y
+
2
y
p
{\displaystyle 2y{\sqrt {p}}+\left\vert x-y{\sqrt {p}}\right\vert <{\frac {1}{y}}+2y{\sqrt {p}}}
.
Bi zenbakien biderketa eginez:
|
x
−
y
p
|
⋅
|
x
+
y
p
|
=
|
x
2
−
p
y
2
|
{\displaystyle \left\vert x-y{\sqrt {p}}\right\vert \cdot \left\vert x+y{\sqrt {p}}\right\vert =\left\vert x^{2}-py^{2}\right\vert }
<
1
y
⋅
(
1
y
+
2
y
p
)
=
1
y
2
+
2
p
≤
1
+
2
p
{\displaystyle <{\frac {1}{y}}\cdot ({\frac {1}{y}}+2y{\sqrt {p}})={\frac {1}{y^{2}}}+2{\sqrt {p}}\leq 1+2{\sqrt {p}}}
. Honela:
x
y
∈
ℜ
⇒
x
y
∈
ℜ
1
{\displaystyle {\frac {x}{y}}\in \Re \Rightarrow {\frac {x}{y}}\in \Re _{1}}
. Eta emaitza frogatzen da:
ℜ
⊂
ℜ
1
;
|
ℜ
|
=
ℵ
⇒
|
ℜ
1
|
=
ℵ
{\displaystyle \Re \subset \Re _{1};|\Re |=\aleph \Rightarrow |\Re _{1}|=\aleph }
.
Bi
|
A
|
=
ℵ
{\displaystyle \left\vert {\mathcal {A}}\right\vert =\aleph }
zeinetan
A
=
{
(
x
,
y
)
∈
N
×
N
:
|
x
2
−
p
y
2
|
<
1
+
2
p
}
{\displaystyle {\mathcal {A}}=\{(x,y)\in \mathbb {N} \times \mathbb {N} :\left\vert x^{2}-py^{2}\right\vert <1+2{\sqrt {p}}\}}
.
Ondorengo aplikazioa sortuko da:
f
:
A
→
ℜ
1
{\displaystyle f:{\mathcal {A}}\rightarrow \Re _{1}}
, zeinetan
f
(
x
,
y
)
=
x
y
{\displaystyle f(x,y)={\frac {x}{y}}}
.
Erraz frogatzen da ondo definitutako aplikazioa dela, eta supraiektiboa dela.
f
{\displaystyle f}
supraiektiboa
⇒
|
ℜ
1
|
≤
|
A
|
{\displaystyle \Rightarrow \left\vert \Re _{1}\right\vert \leq \left\vert {\mathcal {A}}\right\vert }
.
ℜ
1
{\displaystyle \Re _{1}}
infinitua denez,
A
{\displaystyle {\mathcal {A}}}
ere infinitua da:
|
ℜ
1
|
=
ℵ
⇒
|
A
|
=
ℵ
{\displaystyle \left\vert \Re _{1}\right\vert =\aleph \Rightarrow |{\mathcal {A}}|=\aleph }
.
Hiru :
∃
m
∈
Z
;
|
m
|
<
1
+
2
p
{\displaystyle \exists m\in Z;\left\vert m\right\vert <1+2{\sqrt {p}}}
non
|
A
m
|
=
ℵ
{\displaystyle \left\vert {\mathcal {A}}_{m}\right\vert =\aleph }
.
Zeinetan
A
m
=
{
(
x
,
y
)
∈
N
×
N
:
|
x
2
−
p
y
2
|
=
m
}
{\displaystyle {\mathcal {A}}_{m}=\{(x,y)\in \mathbb {N} \times \mathbb {N} :\left\vert x^{2}-py^{2}\right\vert =m\}}
multzoa den.
Multzoen arteko ondorengo berdintza betetzen da:
A
=
⋃
|
m
|
<
1
+
2
p
A
m
{\displaystyle {\mathcal {A}}=\bigcup _{|m|<1+2{\sqrt {p}}}{\mathcal {A}}_{m}}
.
Absurdura bideratuz
∀
m
∈
Z
;
|
m
|
<
1
+
2
p
⇒
|
A
m
|
<
ℵ
{\displaystyle \forall m\in Z;\left\vert m\right\vert <1+2{\sqrt {p}}\Rightarrow \left\vert {\mathcal {A}}_{m}\right\vert <\aleph }
suposatzen bada.
|
A
|
=
|
⋃
|
m
|
<
1
+
2
p
A
m
|
≤
∑
|
m
|
<
1
+
2
p
|
A
m
|
<
ℵ
{\displaystyle |{\mathcal {A}}|=|\bigcup _{|m|<1+2{\sqrt {p}}}{\mathcal {A}}_{m}|\leq \sum _{|m|<1+2{\sqrt {p}}}|{\mathcal {A}}_{m}|<\aleph }
. Multzo finituen batura finitua finitua izateagatik.
Honela,
|
A
|
<
ℵ
{\displaystyle \left\vert {\mathcal {A}}\right\vert <\aleph }
ondorioztatu da, zeinak
|
A
|
=
ℵ
{\displaystyle \left\vert {\mathcal {A}}\right\vert =\aleph }
, ukatzen duen: absurdua.
Existitzen da beraz
A
m
{\displaystyle {\mathcal {A}}_{m}}
multzoren bat infinitu elementu dituena.
Behin
m
∈
Z
{\displaystyle m\in Z}
aukeratu dugularik (
|
m
|
<
1
+
2
p
{\displaystyle \left\vert m\right\vert <1+2{\sqrt {p}}}
) eta
|
A
m
|
=
ℵ
{\displaystyle \left\vert {\mathcal {A}}_{m}\right\vert =\aleph }
,
A
m
{\displaystyle {\mathcal {A}}_{m}}
multzoan Pellen ekuazioa betetzen duen ebazpen ez neutro bat existitzen dela frogatuko da. Ondorengo atalak frogatuz:
Bat : Ondorengo emaitza frogatuko da:
∃
(
x
1
,
y
1
)
,
(
x
2
,
y
2
)
∈
A
m
{\displaystyle \exists (x_{1},y_{1}),(x_{2},y_{2})\in {\mathcal {A}}_{m}}
:
(
x
1
,
y
1
)
≠
(
x
2
,
y
2
)
{\displaystyle (x_{1},y_{1})\neq (x_{2},y_{2})}
,
x
1
≡
x
2
(
mod
|
m
|
)
;
y
1
≡
y
2
(
mod
|
m
|
)
{\displaystyle x_{1}\equiv x_{2}{\pmod {|m|}};y_{1}\equiv y_{2}{\pmod {|m|}}}
.
f
:
A
m
→
Z
|
m
|
×
Z
|
m
|
{\displaystyle f:{\mathcal {A}}_{m}\rightarrow Z_{|m|}\times Z_{|m|}}
, aplikazioa eraikiko da zeinetan
f
(
x
,
y
)
=
(
x
+
|
m
|
Z
,
y
+
|
m
|
Z
)
{\displaystyle f(x,y)=(x+\left\vert m\right\vert Z,y+\left\vert m\right\vert Z)}
,
x
+
|
m
|
Z
∈
Z
|
m
|
=
{
0
¯
,
1
¯
,
.
.
.
,
m
−
1
¯
}
{\displaystyle x+\left\vert m\right\vert Z\in Z_{|m|}=\{{{\bar {0}},{\bar {1}},...,{\overline {m-1}}}\}}
eraztuneko elementuak izanik.
A
m
{\displaystyle {\mathcal {A}}_{m}}
Multzoa infinitua izateagatik eta
Z
|
m
|
×
Z
|
m
|
{\displaystyle Z_{|m|}\times Z_{|m|}}
, multzoa berriz finitua, irudi berdineko bi elementu desberdin existitzen direla ondoriozta daiteke ( zentzu zorrotzean infinitu ere exititu arren).
|
A
m
|
=
ℵ
{\displaystyle \left\vert {\mathcal {A}}_{m}\right\vert =\aleph }
, eta
|
Z
|
m
|
×
Z
|
m
|
|
=
m
2
⇒
{\displaystyle \left\vert Z_{|m|}\times Z_{|m|}\right\vert =m^{2}\Rightarrow }
∃
(
x
1
,
y
1
)
,
(
x
2
,
y
2
)
∈
A
m
{\displaystyle \exists (x_{1},y_{1}),(x_{2},y_{2})\in {\mathcal {A}}_{m}}
.
f
(
x
1
,
y
1
)
=
f
(
x
2
,
y
2
)
{\displaystyle f(x_{1},y_{1})=f(x_{2},y_{2})}
eta
(
x
1
,
y
1
)
≠
(
x
2
,
y
2
)
{\displaystyle (x_{1},y_{1})\neq (x_{2},y_{2})}
.
∃
(
x
1
,
y
1
)
,
(
x
2
,
y
2
)
∈
A
m
{\displaystyle \exists (x_{1},y_{1}),(x_{2},y_{2})\in {\mathcal {A}}_{m}}
non
(
x
1
+
|
m
|
Z
,
y
1
+
|
m
|
Z
)
=
(
x
2
+
|
m
|
Z
,
y
2
+
|
m
|
Z
)
{\displaystyle (x_{1}+\left\vert m\right\vert Z,y_{1}+\left\vert m\right\vert Z)=(x_{2}+\left\vert m\right\vert Z,y_{2}+\left\vert m\right\vert Z)}
, honela
∃
(
x
1
,
y
1
)
,
(
x
2
,
y
2
)
∈
A
m
{\displaystyle \exists (x_{1},y_{1}),(x_{2},y_{2})\in {\mathcal {A}}_{m}}
:
(
x
1
,
y
1
)
≠
(
x
2
,
y
2
)
{\displaystyle (x_{1},y_{1})\neq (x_{2},y_{2})}
eta
x
1
≡
x
2
(
mod
|
m
|
)
;
y
1
≡
y
2
(
mod
|
m
|
)
{\displaystyle x_{1}\equiv x_{2}{\pmod {|m|}};y_{1}\equiv y_{2}{\pmod {|m|}}}
.
Bi : Ondorengo erlazioa frogatuko da:
z
k
h
(
x
1
,
y
1
)
=
z
k
h
(
x
2
,
y
2
)
=
d
{\displaystyle {zkh}(x_{1},y_{1})={zkh}(x_{2},y_{2})=d}
.
d
/
z
k
h
(
x
1
,
y
1
)
⇒
d
/
z
k
h
(
x
2
,
y
2
)
{\displaystyle d/{zkh}(x_{1},y_{1})\Rightarrow d/{zkh}(x_{2},y_{2})}
frogatuko da, lehenik.
d
/
z
k
h
(
x
1
,
y
1
)
⇒
d
/
x
1
;
d
/
y
1
⇒
{
d
2
/
x
1
2
;
d
2
/
y
1
2
x
1
2
−
p
y
1
2
=
m
⇒
d
2
/
m
{\displaystyle d/{zkh}(x_{1},y_{1})\Rightarrow d/x_{1};d/y_{1}\Rightarrow {\begin{cases}d^{2}/x_{1}^{2};d^{2}/y_{1}^{2}\\x_{1}^{2}-py_{1}^{2}=m\end{cases}}\Rightarrow d^{2}/m}
{
{
d
/
x
1
;
d
/
m
x
1
≡
x
2
(
mod
|
m
|
)
⇒
d
/
x
2
{
d
/
y
1
;
d
/
m
y
1
≡
y
2
(
mod
|
m
|
)
⇒
d
/
y
2
⇒
d
/
z
k
t
(
x
2
,
y
2
)
{\displaystyle {\begin{cases}{\begin{cases}d/x1;d/m\\x_{1}\equiv x_{2}{\pmod {|m|}}\end{cases}}\Rightarrow d/x_{2}\\{\begin{cases}d/y_{1};d/m\\y_{1}\equiv y_{2}{\pmod {|m|}}\end{cases}}\Rightarrow d/y_{2}\end{cases}}\Rightarrow d/{zkt}(x_{2},y_{2})}
.
Eta modu berean argudiatzen da:
d
/
z
k
h
(
x
2
,
y
2
)
⇒
d
/
z
k
h
(
x
1
,
y
1
)
{\displaystyle d/{zkh}(x_{2},y_{2})\Rightarrow d/{zkh}(x_{1},y_{1})}
.
Ondorioz:
z
k
h
(
x
1
,
y
1
)
=
z
k
h
(
x
2
,
y
2
)
=
d
{\displaystyle {zkh}(x_{1},y_{1})={zkh}(x_{2},y_{2})=d}
.
Hiru :
(
x
1
x
2
−
p
y
1
y
2
,
x
1
y
2
−
x
2
y
1
)
∈
A
m
{\displaystyle (x_{1}x_{2}-py_{1}y_{2},x_{1}y_{2}-x_{2}y_{1})\in {\mathcal {A}}_{m}}
frogatuko da.
(
x
1
,
y
1
)
,
(
x
2
,
y
2
)
∈
A
m
⇒
(
x
1
x
2
−
p
y
1
y
2
,
x
1
y
2
−
x
2
y
1
)
∈
A
m
{\displaystyle (x_{1},y_{1}),(x_{2},y_{2})\in {\mathcal {A}}_{m}\Rightarrow (x_{1}x_{2}-py_{1}y_{2},x_{1}y_{2}-x_{2}y_{1})\in {\mathcal {A}}_{m}}
.
(
x
1
2
−
p
y
1
2
)
(
x
2
2
−
p
y
2
2
)
=
(
x
1
x
2
−
p
y
1
y
2
)
2
−
p
(
x
1
y
2
−
x
2
y
1
)
2
=
m
2
{\displaystyle (x_{1}^{2}-py_{1}^{2})(x_{2}^{2}-py_{2}^{2})=(x_{1}x_{2}-py_{1}y_{2})^{2}-p(x_{1}y_{2}-x_{2}y_{1})^{2}=m^{2}}
.
Lau :
x
1
y
2
−
x
2
y
1
≡
0
(
mod
|
m
|
)
{\displaystyle x_{1}y_{2}-x_{2}y_{1}\equiv 0{\pmod {|m|}}}
eta
x
1
x
2
−
p
y
1
y
2
≡
0
(
mod
|
m
|
)
{\displaystyle x_{1}x_{2}-py_{1}y_{2}\equiv 0{\pmod {|m|}}}
frogatuko da.
{
x
2
−
x
1
≡
0
(
mod
|
m
|
)
⇒
y
2
(
x
2
−
x
1
)
≡
0
(
mod
|
m
|
)
y
2
−
y
1
≡
0
(
mod
|
m
|
)
⇒
x
2
(
y
2
−
y
1
)
≡
0
(
mod
|
m
|
)
{\displaystyle {\begin{cases}x_{2}-x_{1}\equiv 0{\pmod {\left\vert m\right\vert }}\Rightarrow y_{2}(x_{2}-x_{1})\equiv 0{\pmod {\left\vert m\right\vert }}\\y_{2}-y_{1}\equiv 0{\pmod {\left\vert m\right\vert }}\Rightarrow x_{2}(y_{2}-y_{1})\equiv 0{\pmod {\left\vert m\right\vert }}\end{cases}}}
Kenketa eginez:
x
1
y
2
−
x
2
y
1
≡
0
(
mod
|
m
|
)
{\displaystyle x_{1}y_{2}-x_{2}y_{1}\equiv 0{\pmod {|m|}}}
x
1
y
2
−
x
2
y
1
≡
0
(
mod
|
m
|
)
⇒
(
x
1
y
2
−
x
2
y
1
)
2
≡
0
(
mod
m
2
)
{\displaystyle x_{1}y_{2}-x_{2}y_{1}\equiv 0{\pmod {|m|}}\Rightarrow (x_{1}y_{2}-x_{2}y_{1})^{2}\equiv 0{\pmod {m^{2}}}}
{
(
x
1
x
2
−
p
y
1
y
2
)
2
−
p
(
x
1
y
2
−
x
2
y
1
)
2
=
m
2
(
x
1
y
2
−
x
2
y
1
)
2
≡
0
(
mod
m
2
)
⇒
(
x
1
x
2
−
p
y
1
y
2
)
2
≡
0
(
mod
m
2
)
{\displaystyle {\begin{cases}(x_{1}x_{2}-py_{1}y_{2})^{2}-p(x_{1}y_{2}-x_{2}y_{1})^{2}=m^{2}\\(x_{1}y_{2}-x_{2}y_{1})^{2}\equiv 0{\pmod {m^{2}}}\end{cases}}\Rightarrow (x_{1}x_{2}-py_{1}y_{2})^{2}\equiv 0{\pmod {m^{2}}}}
(
x
1
x
2
−
p
y
1
y
2
)
2
≡
0
(
mod
m
2
)
⇒
x
1
x
2
−
p
y
1
y
2
≡
0
(
mod
|
m
|
)
{\displaystyle (x_{1}x_{2}-py_{1}y_{2})^{2}\equiv 0{\pmod {m^{2}}}\Rightarrow x_{1}x_{2}-py_{1}y_{2}\equiv 0{\pmod {|m|}}}
.
x
1
x
2
−
p
y
1
y
2
≡
0
(
mod
|
m
|
)
{\displaystyle x_{1}x_{2}-py_{1}y_{2}\equiv 0{\pmod {|m|}}}
.
Bost : Pellen ekuazioaren ebazpen bat existitzen dela frogatuko da.
∃
(
u
,
v
)
∈
Z
×
Z
:
u
2
−
p
v
2
=
1
{\displaystyle \exists (u,v)\in \mathbb {Z} \times \mathbb {Z} :u^{2}-pv^{2}=1}
{
x
1
y
2
−
x
2
y
1
≡
0
(
mod
|
m
|
)
x
1
x
2
−
p
y
1
y
2
≡
0
(
mod
|
m
|
)
⇒
∃
u
,
v
∈
Z
{\displaystyle {\begin{cases}x_{1}y_{2}-x_{2}y_{1}\equiv 0{\pmod {|m|}}\\x_{1}x_{2}-py_{1}y_{2}\equiv 0{\pmod {|m|}}\end{cases}}\Rightarrow \exists u,v\in \mathbb {Z} }
non
{
x
1
y
2
−
x
2
y
1
=
v
m
x
1
x
2
−
p
y
1
y
2
=
u
m
{\displaystyle {\begin{cases}x_{1}y_{2}-x_{2}y_{1}=vm\\x_{1}x_{2}-py_{1}y_{2}=um\end{cases}}}
(
x
1
2
−
p
y
1
2
)
(
x
2
2
−
p
y
2
2
)
=
(
x
1
x
2
−
p
y
1
y
2
)
2
−
p
(
x
1
y
2
−
x
2
y
1
)
2
=
m
2
{\displaystyle (x_{1}^{2}-py_{1}^{2})(x_{2}^{2}-py_{2}^{2})=(x_{1}x_{2}-py_{1}y_{2})^{2}-p(x_{1}y_{2}-x_{2}y_{1})^{2}=m^{2}}
.
(
x
1
x
2
−
p
y
1
y
2
)
2
−
p
(
x
1
y
2
−
x
2
y
1
)
2
=
m
2
⇔
(
u
m
)
2
−
p
(
v
m
)
2
=
m
2
⇔
u
2
−
p
v
2
=
1
{\displaystyle (x_{1}x_{2}-py_{1}y_{2})^{2}-p(x_{1}y_{2}-x_{2}y_{1})^{2}=m^{2}\Leftrightarrow (um)^{2}-p(vm)^{2}=m^{2}\Leftrightarrow u^{2}-pv^{2}=1}
Ondorioz Pell ekuazioaren ebazpen bat existitzen da:
x
=
u
,
y
=
v
{\displaystyle x=u,y=v}
.
Sei: Ebazpena ez dela neutroa frogatuko da:
v
≠
0
{\displaystyle v\neq 0}
.
Absurdura bideratuz,
v
=
0
{\displaystyle v=0}
baldin bada:
x
1
y
2
=
x
2
y
1
{\displaystyle x_{1}y_{2}=x_{2}y_{1}}
.
z
k
t
(
x
1
,
y
1
)
=
z
k
t
(
x
2
,
y
2
)
=
d
{\displaystyle {zkt}(x_{1},y_{1})={zkt}(x_{2},y_{2})=d}
denez ondorengo zenbakiak sortuko dira:
x
1
=
d
x
1
′
,
x
2
=
d
x
2
′
,
y
1
=
d
y
1
′
,
y
2
=
d
y
2
′
{\displaystyle x_{1}=dx'_{1},x_{2}=dx'_{2},y_{1}=dy'_{1},y_{2}=dy'_{2}}
.
Zenbaki hauen zatitzaile komunetako handiena:
z
k
t
(
x
1
,
y
1
)
=
z
k
t
(
x
2
,
y
2
)
=
d
⇒
z
k
t
(
x
1
′
,
y
1
′
)
=
z
k
t
(
x
2
′
,
y
2
′
)
=
1
{\displaystyle {zkt}(x_{1},y_{1})={zkt}(x_{2},y_{2})=d\Rightarrow {zkt}(x'_{1},y'_{1})={zkt}(x'_{2},y'_{2})=1}
.
Eta:
x
1
y
2
=
x
2
y
1
⇒
x
1
′
y
2
′
=
x
2
′
y
1
′
{\displaystyle x_{1}y_{2}=x_{2}y_{1}\Rightarrow x'_{1}y'_{2}=x'_{2}y'_{1}}
{
{
x
1
′
y
2
′
=
x
2
′
y
1
′
z
k
t
(
x
1
′
,
y
1
′
)
=
1
⇒
y
2
′
y
1
′
=
x
2
′
x
1
′
∈
Z
{
x
1
′
y
2
′
=
x
2
′
y
1
′
z
k
t
(
x
2
′
,
y
2
′
)
=
1
⇒
x
1
′
x
2
′
=
y
1
′
y
2
′
∈
Z
{\displaystyle {\begin{cases}{\begin{cases}x'_{1}y'_{2}=x'_{2}y'_{1}\\{zkt}(x'_{1},y'_{1})=1\end{cases}}\Rightarrow {\frac {y'_{2}}{y'_{1}}}={\frac {x'_{2}}{x'_{1}}}\in \mathbb {Z} \\{\begin{cases}x'_{1}y'_{2}=x'_{2}y'_{1}\\{zkt}(x'_{2},y'_{2})=1\end{cases}}\Rightarrow {\frac {x'_{1}}{x'_{2}}}={\frac {y'_{1}}{y'_{2}}}\in \mathbb {Z} \end{cases}}}
.
Zenbaki oso bat bere alderantzizkoaren berdina bada, zenbaki oso hori: 1 edo -1 da.
x
2
′
x
1
′
=
−
1
⇒
x
2
=
−
x
1
{\displaystyle {\frac {x'_{2}}{x'_{1}}}=-1\Rightarrow x_{2}=-x_{1}}
bada, bietako bat negatiboa da, eta aukeraketa
x
+
|
m
|
Z
∈
Z
|
m
|
=
{
0
¯
,
1
¯
,
.
.
.
,
m
−
1
¯
}
{\displaystyle x+\left\vert m\right\vert Z\in Z_{|m|}=\{{{\bar {0}},{\bar {1}},...,{\overline {m-1}}}\}}
multzotik egin da ezinezkoa.
x
2
′
x
1
′
=
1
{\displaystyle {\frac {x'_{2}}{x'_{1}}}=1}
, bada
(
x
1
′
,
y
1
′
)
=
(
x
2
′
,
y
2
′
)
⇒
(
x
1
,
y
1
)
=
(
x
2
,
y
2
)
{\displaystyle (x'_{1},y'_{1})=(x'_{2},y'_{2})\Rightarrow (x_{1},y_{1})=(x_{2},y_{2})}
. Zeinak osagaien aukeraketa ukatzen duen, ezinezkoa.
Ondorioz:
v
≠
0
{\displaystyle v\neq 0}
.