The fruit fly Drosophila melanogaster combats microbial infection by producing a battery of effec... more The fruit fly Drosophila melanogaster combats microbial infection by producing a battery of effector peptides that are secreted into the haemolymph. Technical difficulties prevented the investigation of these short effector genes until the recent advent of the CRISPR/CAS era. As a consequence, many putative immune effectors remain to be formally described, and exactly how each of these effectors contribute to survival is not well characterized. Here we describe a novel Drosophila antifungal peptide gene that we name Baramicin A. We show that BaraA encodes a precursor protein cleaved into multiple peptides via furin cleavage sites. BaraA is strongly immune-induced in the fat body downstream of the Toll pathway, but also exhibits expression in other tissues. Importantly, we show that flies lacking BaraA are viable but susceptible to the entomopathogenic fungus Beauveria bassiana. Consistent with BaraA being directly antimicrobial, overexpression of BaraA promotes resistance to fungi a...
Acta Crystallographica Section F Structural Biology and Crystallization Communications, 2009
The second type II cohesin module of the cellulosomal scaffoldin polypeptide ScaB from Acetivibri... more The second type II cohesin module of the cellulosomal scaffoldin polypeptide ScaB from Acetivibrio cellulolyticus (CohB2) was cloned into two constructs: one containing a short (five-residue) C-terminal linker (CohB2_S) and the second incorporating the full native 45-residue linker (CohB2_L). Both constructs encode proteins that also include the full native six-residue N-terminal linker. The CohB2_S and CohB2_L proteins were expressed, purified and crystallized in the orthorhombic crystal system, but with different unit cells and symmetries: space group P2 1 2 1 2 1 with unit-cell parameters a = 90.36, b = 68.65, c = 111.29 Å for CohB2_S and space group P2 1 2 1 2 with unitcell parameters a = 68.76, b = 159.22, c = 44.21 Å for CohB2_L. The crystals diffracted to 2.0 and 2.9 Å resolution, respectively. The asymmetric unit of CohB2_S contains three cohesin molecules, while that of CohB2_L contains two molecules.
The dorsoventral regulatory gene pathway (spä tzle/ Toll/cactus) controls the expression of sever... more The dorsoventral regulatory gene pathway (spä tzle/ Toll/cactus) controls the expression of several antimicrobial genes during the immune response of Drosophila. This regulatory cascade shows striking similarities with the cytokine-induced activation cascade of NF-B during the inflammatory response in mammals. Here, we have studied the regulation of the IB homologue Cactus in the fat body during the immune response. We observe that the cactus gene is up-regulated in response to immune challenge. Interestingly, the expression of the cactus gene is controlled by the spä tzle/Toll/cactus gene pathway, indicating that the cactus gene is autoregulated. We also show that two Cactus isoforms are expressed in the cytoplasm of fat body cells and that they are rapidly degraded and resynthesized after immune challenge. This degradation is also dependent on the Toll signaling pathway. Altogether, our results underline the striking similarities between the regulation of IB and cactus during the immune response.
Spiroplasma poulsonii and its relatives are facultative, vertically transmitted endosymbionts har... more Spiroplasma poulsonii and its relatives are facultative, vertically transmitted endosymbionts harboured by several Drosophila species. Their long-term survival requires not only evasion of host immunity, but also that Spiroplasma does not have a net detrimental effect on host fitness. These requirements provide the central framework for interactions between host and endosymbiont. We use Drosophila melaogaster as a model to unravel aspects of the mechanistic basis of endosymbiont–host immune interactions. Here we show that Spiroplasma does not activate an immune response in Drosophila and is not susceptible to either the cellular or humoral arms of the Drosophila immune system. We gain unexpected insight into host factors that can promote Spiroplasma growth by showing that activation of Toll and Imd immune pathways actually increases Sprioplasma titre. Spiroplasma-mediated protection is not observed for variety of fungal and bacterial pathogens and Spiroplasma actually increases susceptibility of Drosophila to certain Gram-negative pathogens. Finally, we show that the growth of endosymbiotic Spiroplasma is apparently self-regulated, as suggested by the unhindered proliferation of non-endosymbiotic Spiroplasma citri in fly haemolymph.
The founding member of the inhibitor of apoptosis protein (IAP) family was originally identified ... more The founding member of the inhibitor of apoptosis protein (IAP) family was originally identified as a cell death inhibitor. However, recent evidence suggests that IAPs are multifunctional signaling devices that influence diverse biological processes. To investigate the in vivo function of Drosophila melanogaster IAP2, we have generated diap2 null alleles. diap2 mutant animals develop normally and are fully viable, suggesting that diap2 is dispensable for proper development. However, these animals were acutely sensitive to infection by gram-negative bacteria. In Drosophila, infection by gram-negative bacteria triggers the innate immune response by activating the immune deficiency (imd) signaling cascade, a NF-B-dependent pathway that shares striking similarities with the pathway of mammalian tumor necrosis factor receptor 1 (TNFR1). diap2 mutant flies failed to activate NF-B-mediated expression of antibacterial peptide genes and, consequently, rapidly succumbed to bacterial infection. Our genetic epistasis analysis places diap2 downstream of or in parallel to imd, Dredd, Tak1, and Relish. Therefore, DIAP2 functions in the host immune response to gram-negative bacteria. In contrast, we find that the Drosophila TNFR-associated factor (Traf) family member Traf2 is dispensable in resistance to gram-negative bacterial infection. Taken together, our genetic data identify DIAP2 as an essential component of the Imd signaling cascade, protecting the organism from infiltrating microbes.
Erwinia Virulence Factor (Evf) has been identified in Erwinia carotovora carotovora 15 (Ecc15) as... more Erwinia Virulence Factor (Evf) has been identified in Erwinia carotovora carotovora 15 (Ecc15) as a virulence factor that promotes colonization of the Drosophila larval gut and provokes the triggering of a systemic immune response. Here we have analysed how Evf promotes persistence and colonization of bacteria inside the larval gut. Erwinia evf mutants do not persist in immune-deficient Drosophila, indicating that Evf does not act by counteracting immunity. The results indicated that Evf is not a toxin because various Gram-negative bacteria expressing evf can persist without affecting viability of Drosophila larvae. Evf did not appear to be a factor antagonizing a host-specific reaction because in vitro assays failed to reveal detoxifying enzymatic activities against various compounds thought to contribute to the hostile environment of the gut. These findings were corroborated by the observation that Evf is not required for survival in midgut organ cultures. By contrast, bacteria expressing evf allow persistence in trans of bacteria lacking evf indicating that Evf promotes the accumulation of Gram-negative bacteria in the anterior midgut by affecting gut physiology.
The fruit fly Drosophila melanogaster combats microbial infection by producing a battery of effec... more The fruit fly Drosophila melanogaster combats microbial infection by producing a battery of effector peptides that are secreted into the haemolymph. Technical difficulties prevented the investigation of these short effector genes until the recent advent of the CRISPR/CAS era. As a consequence, many putative immune effectors remain to be formally described, and exactly how each of these effectors contribute to survival is not well characterized. Here we describe a novel Drosophila antifungal peptide gene that we name Baramicin A. We show that BaraA encodes a precursor protein cleaved into multiple peptides via furin cleavage sites. BaraA is strongly immune-induced in the fat body downstream of the Toll pathway, but also exhibits expression in other tissues. Importantly, we show that flies lacking BaraA are viable but susceptible to the entomopathogenic fungus Beauveria bassiana. Consistent with BaraA being directly antimicrobial, overexpression of BaraA promotes resistance to fungi a...
Acta Crystallographica Section F Structural Biology and Crystallization Communications, 2009
The second type II cohesin module of the cellulosomal scaffoldin polypeptide ScaB from Acetivibri... more The second type II cohesin module of the cellulosomal scaffoldin polypeptide ScaB from Acetivibrio cellulolyticus (CohB2) was cloned into two constructs: one containing a short (five-residue) C-terminal linker (CohB2_S) and the second incorporating the full native 45-residue linker (CohB2_L). Both constructs encode proteins that also include the full native six-residue N-terminal linker. The CohB2_S and CohB2_L proteins were expressed, purified and crystallized in the orthorhombic crystal system, but with different unit cells and symmetries: space group P2 1 2 1 2 1 with unit-cell parameters a = 90.36, b = 68.65, c = 111.29 Å for CohB2_S and space group P2 1 2 1 2 with unitcell parameters a = 68.76, b = 159.22, c = 44.21 Å for CohB2_L. The crystals diffracted to 2.0 and 2.9 Å resolution, respectively. The asymmetric unit of CohB2_S contains three cohesin molecules, while that of CohB2_L contains two molecules.
The dorsoventral regulatory gene pathway (spä tzle/ Toll/cactus) controls the expression of sever... more The dorsoventral regulatory gene pathway (spä tzle/ Toll/cactus) controls the expression of several antimicrobial genes during the immune response of Drosophila. This regulatory cascade shows striking similarities with the cytokine-induced activation cascade of NF-B during the inflammatory response in mammals. Here, we have studied the regulation of the IB homologue Cactus in the fat body during the immune response. We observe that the cactus gene is up-regulated in response to immune challenge. Interestingly, the expression of the cactus gene is controlled by the spä tzle/Toll/cactus gene pathway, indicating that the cactus gene is autoregulated. We also show that two Cactus isoforms are expressed in the cytoplasm of fat body cells and that they are rapidly degraded and resynthesized after immune challenge. This degradation is also dependent on the Toll signaling pathway. Altogether, our results underline the striking similarities between the regulation of IB and cactus during the immune response.
Spiroplasma poulsonii and its relatives are facultative, vertically transmitted endosymbionts har... more Spiroplasma poulsonii and its relatives are facultative, vertically transmitted endosymbionts harboured by several Drosophila species. Their long-term survival requires not only evasion of host immunity, but also that Spiroplasma does not have a net detrimental effect on host fitness. These requirements provide the central framework for interactions between host and endosymbiont. We use Drosophila melaogaster as a model to unravel aspects of the mechanistic basis of endosymbiont–host immune interactions. Here we show that Spiroplasma does not activate an immune response in Drosophila and is not susceptible to either the cellular or humoral arms of the Drosophila immune system. We gain unexpected insight into host factors that can promote Spiroplasma growth by showing that activation of Toll and Imd immune pathways actually increases Sprioplasma titre. Spiroplasma-mediated protection is not observed for variety of fungal and bacterial pathogens and Spiroplasma actually increases susceptibility of Drosophila to certain Gram-negative pathogens. Finally, we show that the growth of endosymbiotic Spiroplasma is apparently self-regulated, as suggested by the unhindered proliferation of non-endosymbiotic Spiroplasma citri in fly haemolymph.
The founding member of the inhibitor of apoptosis protein (IAP) family was originally identified ... more The founding member of the inhibitor of apoptosis protein (IAP) family was originally identified as a cell death inhibitor. However, recent evidence suggests that IAPs are multifunctional signaling devices that influence diverse biological processes. To investigate the in vivo function of Drosophila melanogaster IAP2, we have generated diap2 null alleles. diap2 mutant animals develop normally and are fully viable, suggesting that diap2 is dispensable for proper development. However, these animals were acutely sensitive to infection by gram-negative bacteria. In Drosophila, infection by gram-negative bacteria triggers the innate immune response by activating the immune deficiency (imd) signaling cascade, a NF-B-dependent pathway that shares striking similarities with the pathway of mammalian tumor necrosis factor receptor 1 (TNFR1). diap2 mutant flies failed to activate NF-B-mediated expression of antibacterial peptide genes and, consequently, rapidly succumbed to bacterial infection. Our genetic epistasis analysis places diap2 downstream of or in parallel to imd, Dredd, Tak1, and Relish. Therefore, DIAP2 functions in the host immune response to gram-negative bacteria. In contrast, we find that the Drosophila TNFR-associated factor (Traf) family member Traf2 is dispensable in resistance to gram-negative bacterial infection. Taken together, our genetic data identify DIAP2 as an essential component of the Imd signaling cascade, protecting the organism from infiltrating microbes.
Erwinia Virulence Factor (Evf) has been identified in Erwinia carotovora carotovora 15 (Ecc15) as... more Erwinia Virulence Factor (Evf) has been identified in Erwinia carotovora carotovora 15 (Ecc15) as a virulence factor that promotes colonization of the Drosophila larval gut and provokes the triggering of a systemic immune response. Here we have analysed how Evf promotes persistence and colonization of bacteria inside the larval gut. Erwinia evf mutants do not persist in immune-deficient Drosophila, indicating that Evf does not act by counteracting immunity. The results indicated that Evf is not a toxin because various Gram-negative bacteria expressing evf can persist without affecting viability of Drosophila larvae. Evf did not appear to be a factor antagonizing a host-specific reaction because in vitro assays failed to reveal detoxifying enzymatic activities against various compounds thought to contribute to the hostile environment of the gut. These findings were corroborated by the observation that Evf is not required for survival in midgut organ cultures. By contrast, bacteria expressing evf allow persistence in trans of bacteria lacking evf indicating that Evf promotes the accumulation of Gram-negative bacteria in the anterior midgut by affecting gut physiology.
Uploads
Papers by Bruno Lemaitre