Jump to content

Examine individual changes

This page allows you to examine the variables generated by the Edit Filter for an individual change.

Variables generated for this change

VariableValue
Edit count of the user (user_editcount)
null
Name of the user account (user_name)
'213.230.90.31'
Age of the user account (user_age)
0
Groups (including implicit) the user is in (user_groups)
[ 0 => '*' ]
Rights that the user has (user_rights)
[ 0 => 'createaccount', 1 => 'read', 2 => 'edit', 3 => 'createtalk', 4 => 'writeapi', 5 => 'viewmyprivateinfo', 6 => 'editmyprivateinfo', 7 => 'editmyoptions', 8 => 'abusefilter-log-detail', 9 => 'urlshortener-create-url', 10 => 'centralauth-merge', 11 => 'abusefilter-view', 12 => 'abusefilter-log', 13 => 'vipsscaler-test' ]
Whether or not a user is editing through the mobile interface (user_mobile)
false
Whether the user is editing from mobile app (user_app)
false
Page ID (page_id)
17334297
Page namespace (page_namespace)
0
Page title without namespace (page_title)
'List of reservoirs by volume'
Full page title (page_prefixedtitle)
'List of reservoirs by volume'
Edit protection level of the page (page_restrictions_edit)
[]
Last ten users to contribute to the page (page_recent_contributors)
[ 0 => 'Andrew11374265', 1 => 'Wikihistorian', 2 => 'InternetArchiveBot', 3 => 'Nathan Fisher', 4 => 'Larryv', 5 => '158.68.220.12', 6 => 'Mactin', 7 => '176.36.155.49', 8 => '112.200.11.198', 9 => 'ReneeWrites' ]
Page age in seconds (page_age)
499249011
Action (action)
'edit'
Edit summary/reason (summary)
'/* List */ '
Old content model (old_content_model)
'wikitext'
New content model (new_content_model)
'wikitext'
Old page wikitext, before the edit (old_wikitext)
'{{Short description|none}} The classification of a [[reservoir]] by volume is not as straightforward as it may seem. As the name implies, water is held in reserve by a reservoir so it can serve a purpose. For example, in [[Thailand]], reservoirs tend to store water from the wet season to prevent flooding, then release it during the dry season for farmers to grow rice. For this type of reservoir, almost the entire volume of the reservoir functions for the purpose it was built. [[Hydroelectricity|Hydroelectric power generation]], on the other hand, requires many dams to build up a large volume before operation can begin. For this type of reservoir only a small portion of the water held behind the dam is useful. Therefore, knowing the purpose for which a reservoir has been constructed, and knowing how much water can be used for that purpose, helps determine how much water is in possible reserve. ==Terminology== The following terms are used in connection with the volume of reservoirs: {{glossary}} {{term |1=Nominal volume}} {{term |1=Capacity |multi=y}} {{defn |1=The total volume of all water held behind a dam at the maximum level possible.}} {{term |1=Initial volume}} {{term |1=Design volume |multi=y}} {{defn |1=The possible volume within the reservoir after it first opens. Many rivers are high in silt that over time deposits behind a dam reducing capacity.}} {{term |1=Active volume}} {{term |1=Live volume |multi=y}} {{defn |1=The total capacity minus the dead pool volume. This is the volume that can serve some downstream purpose. For example, it is the volume available to make hydroelectric power or provide drinking water to a city.}} {{term |1=Dead pool volume}} {{term |1=Minimum volume |multi=y}} {{defn |1=The amount of water left in a reservoir that cannot be used for the general purpose the reservoir was constructed. At this state, the reservoir is termed ''fully drawn down.'' For example, if built to supply water in the dry season, it is the water left behind when no more water can be extracted. Frequently, the effective minimum volume is greater if the water is needed for a purpose behind a dam.}} {{term |1=Available capacity}} {{defn |1=May require knowing the reservoir's primary purpose. If it is designed to prevent flooding, it may be the volume of water that can be retained before reaching maximum or ''top water''.}} {{term |1=Actual}} {{term |1=Current |multi=y}} {{defn |1=When coupled with another term, reflects the fact the level behind the dam is not constant.}} {{glossary end}} ==Expanded versus artificial lakes== The list below largely ignores many natural lakes that have been augmented with the addition of a relatively minor dam. For example, a small dam, two hydroelectric plants, and locks on the outlet of [[Lake Superior]] make it possible to artificially control the lake level. Certainly, the great majority of the lake is natural. However, the control of water that can be held in reserve means a portion of the vast lake functions as a reservoir. Recognition of lakes like Lake Superior greatly changes the list below. For example, the Francis H. Clergue Generating Station and [[Saint Marys Falls Hydropower Plant]], which are both on the lake's outlet, operate with just 5.9 meters total head. This is short compared to other dams. However, when viewed against the 81,200 km2 area of the lake, even a small range in Lake Superior's water level means its ''active'' volume is greater than the largest ''nominal'' in the table below. ==List== {| class="wikitable sortable" ! width="4%" | Rank ! width="18%" | Reservoir ! width="18%" | Dam ! width="18%" | River ! width="18%" | Country ! width="9%" | Year ! scope="col" class="text-align:right;" width="9%" | Nominal volume km³ ! width="10%" class="unsortable" | {{Tooltip|Ref.|Reference(s)}} |- | 1 ||[[Lake Kariba]]||[[Kariba Dam]]||[[Zambezi River]] || {{ZAM}} and {{ZIM}} || 1959 || 180.6 ||,<ref name=Chao /> 160.3<ref name=Avakyan /> |- | 2 ||[[Bratsk Reservoir]]||[[Bratsk Dam]]||[[Angara River]] || {{RUS}} || 1964 || 169 ||,<ref name=Chao /> 169.3<ref name=Avakyan /> |- | 3 ||[[Lake Volta]]||[[Akosombo Dam]]||[[Volta River]] || {{GHA}} || 1965 || 150 ||,<ref name=Chao /> 148<ref name=Avakyan /> |- | 4 ||[[Manicouagan Reservoir]]||[[Daniel-Johnson Dam]]||[[Manicouagan River]] || {{CAN}} || 1968 || 141.85 ||,<ref name=Chao /> 141.7<ref name=Avakyan /> |- | 5 || [[Guri Reservoir]]||[[Guri Dam]]||[[Caroní River]] || {{VEN}} || 1986 || 135 || <ref name=Chao /> |- | 6 ||[[Lake Nasser]]||[[Aswan High Dam]]||[[Nile River]] || {{EGY}} and {{SUD}} || 1971 || 132 || <ref>{{Cite web|url=http://www.water-technology.net/projects/aswan-high-dam-nile-sudan-egypt/|title = Aswan High Dam, River Nile, Sudan, Egypt - Water Technology}}</ref> |- | 7 ||Millennium Reservoir||[[Grand Ethiopian Renaissance Dam]]||[[Blue Nile River]] || {{ETH}} || under construction || 79 || <ref name="salinides">{{cite web|title=Grand Ethiopian Renaissance Dam Project|url=http://www.salini-impregilo.com/lavori/in-corso/dighe-impianti-idroelettrici/grand-ethiopian-renaissance-dam-project.html|publisher=Salini|accessdate=17 January 2014}}</ref> |- | 8 ||[[Williston Lake]]||[[W. A. C. Bennett Dam]]||[[Peace River (Canada)|Peace River]] || {{CAN}} || 1967 || 74.3 || <ref name=Chao /> |- | 9 ||[[Krasnoyarsk Reservoir]] ||[[Krasnoyarsk Dam]]||[[Yenisei River]] || {{RUS}} || 1967 || 73.3 || <ref name=Chao /><ref name=Avakyan /> |- | 10 ||[[Zeya Reservoir]]||[[Zeya Hydroelectric Station]] ([[:ru:Зейская ГЭС|ru]]) ||[[Zeya River]] || {{RUS}} || 1978 || 68.4 || <ref name=Chao /><ref name=Avakyan /> |- | 11 ||[[Robert-Bourassa Reservoir]]||[[Robert-Bourassa generating station]]|| La Grande River || {{CAN}} || 1981 || 61.71 || <ref name=Chao /> |- | 12 || La Grande-3 Nord Reservoir ||[[La Grande-3 generating station]]||[[La Grande River]] || {{CAN}} || 1981 || 60.02 || <ref name=Chao /> |- | 13 ||[[Ust-Ilimsk Reservoir]]||[[Ust-Ilimsk Dam]]||[[Angara River]] || {{RUS}} || 1977 || 59.3 || <ref name=Chao /><ref name=Avakyan /> |- | 14 ||[[Boguchany Reservoir]]||[[Boguchany Dam]]||[[Angara River]] || {{RUS}} || 2012 || 58.2 || <ref name=Chao /> |- | 15 ||[[Kuybyshev Reservoir]]||[[Zhiguli Hydroelectric Station]]||[[Volga River]] || {{RUS}} || 1955 || 58 || <ref name=Chao /><ref name=Avakyan>{{cite journal|vauthors=Avakyan AB, Ovchinnikova SP |name-list-style=amp |title=Foreign experience and techniques | journal=Hydrotechnical Construction | volume=5 | issue = 8 | pages = 773–777 | year=1971 | doi=10.1007/BF02403626|s2cid=110352316 }}</ref> |- | 16 ||[[Cahora Bassa]]||[[Cahora Bassa Dam]]||[[Zambezi River]] || {{MOZ}} || 1974 || 55.8 || <ref name=Chao /> |- | 17 ||[[Serra da Mesa Reservoir]]||[[Serra da Mesa Dam]]||[[Tocantins River]] || {{BRA}} || 1998 || 54.4 || <ref name="efur">{{cite web|title=Hydroelectric Power DA SERRA MESA (1.275MW)|url=http://www.furnas.com.br/hotsites/sistemafurnas/usina_hidr_serramesa.asp|publisher=[[Eletrobras Furnas]]|accessdate=18 September 2010|language=Portuguese|archive-url=https://web.archive.org/web/20180317035716/http://www.furnas.com.br/hotsites/sistemafurnas/usina_hidr_serramesa.asp|archive-date=17 March 2018|url-status=dead}}</ref> |- | 18 ||[[Caniapiscau Reservoir]]||[[Brisay generating station]]||[[Caniapiscau River]] || {{CAN}} || 1981 || 53.8 || <ref name=Chao /> |- | 19 || ||[[Pati Dam|Pati]]–[[Chapetón Dam|Chapetón]](proposal) ||[[Paraná River]] || {{ARG}} || ? || 53.7 || <ref name=Chao /> |- | 20 ||[[Bukhtarma Reservoir]] ||[[Bukhtarma Hydroelectric Power Plant]]||[[Irtysh River]] || {{KAZ}} || 1967 || 53 || <ref name=Chao /><ref name=Avakyan /> |- | 21 ||[[Danjiangkou Reservoir]]||[[Danjiangkou Dam]]||Han River (Yangtze River tributary)|| {{PRC}} || 1962 || 51.6 || <ref name=Chao /> |- | 22 ||[[Atatürk Reservoir]]||[[Atatürk Dam]]||[[Euphrates]] || {{TUR}} || 1992 || 48.7 || <ref name=Chao /> |- | 23 ||[[Irkutsk Reservoir]]||[[Irkutsk Dam]]||[[Angara River]] || {{RUS}} || 1956 || 46 || <ref name=Chao /> |- | 24 ||[[Lago Tucuruí]]||[[Tucuruí Dam]]||[[Tocantins River]] || {{BRA}} || 1984 || 45.54 || <ref name=Chao /> |- | 25 || Los Barreales Lake?{{Verify source|date=November 2010}}|| Loma de la Lata Dam? ([[Cerros Colorados Complex]]){{Verify source|date=November 2010}}||[[Neuquén River]] || {{ARG}} || 1973 || 43.5 || <ref name=Chao /> |- | 26 || Mari Menuco Lake?{{Verify source|date=November 2010}}|| Planicie Banderita hydroelectric power plant ([[Cerros Colorados Complex]]) ||[[Neuquén River]] || {{ARG}} || 1979 || 43 || <ref name=Chao /> |- | 27 ||[[Three Gorges Reservoir]]||[[Three Gorges Dam]]||[[Yangtze River]] || {{PRC}} || 2009 || 39.3 || <ref name=Chao /> |- | 28 ||[[Lake Mead]]||[[Hoover Dam]]||[[Colorado River]] || {{USA}} || 1936 || 37.3 || <ref name=Chao /> |- | 29 || ||[[Winar Grue]]?{{Verify source|date=November 2010}}|| || {{CAN}} || 1952 || 37 || <ref name=Chao /> |- | 30 ||[[Roseires Reservoir]]||[[Roseires Dam]]||[[Blue Nile]] || {{SUD}} || 1966 || 36.3 || <ref name=Chao /> |- | 31 ||[[Vilyuy Reservoir]] ([[:ru:Вилюйское водохранилище|ru]]) ||[[Vilyuy Dam]] ([[:ru:Вилюйская ГЭС|ru]]) ||[[Vilyuy River]] || {{RUS}} || 1967 || 35.9 || <ref name=Chao /> |- | 32 ||[[Lake Powell]]||[[Glen Canyon Dam]]||[[Colorado River]] || {{USA}} || 1964 || 35.55 || <ref name=Chao /> |- |33 ||[[Lake Argyle]]||[[Lake Argyle Dam]]||[[Ord River]]|| {{AUS}} || 1971 || 35 || <ref>Harrison, Rod; Ernie James; Chris Sully; Bill Classon; Joy Eckermann (2008). Queensland Dams. Bayswater, Victoria: Australian Fishing Network. pp. 60–61. ISBN 978-1-86513-134-4.</ref><ref> Kay, B. (2006). Water Resources: Health, Environment and Development. CRC Press. p. 108. ISBN 9780203027851. Retrieved 2014-12-13.</ref> |- | 34 ||[[Nechako Reservoir]]||[[Kenney Dam]]||[[Nechako River|Nechako]]–[[Kemano River|Kemano]] || {{CAN}} || 1966 || 35 || <ref name=Chao /> |- | 35 ||[[Sobradinho Reservoir]]||[[Sobradinho Dam]]||[[São Francisco River]] || {{BRA}} || 1979 || 34.1 || <ref name=Chao /> |- | 36 ||[[Smallwood Reservoir]]||[[Churchill Falls Generating Station|Churchill Falls]]||[[Churchill River (Atlantic)|Churchill River]] || {{CAN}} || 1971 || 32.64 || <ref name=Chao /> |- | 37 || ||[[Nelson River Hydroelectric Project|Jenpeg Dam]]||[[Lake Winnipeg]] outlet || {{CAN}} || 1975 || 31.79 || <ref name=Chao /> |- | 38 ||[[Keban Dam Lake]]||[[Keban Dam]]||[[Euphrates]] || {{TUR}} || 1971 || 31.5 || <ref name=Chao /> |- | 39 ||[[Volgograd Reservoir]]||[[Volga Hydroelectric Station]]||[[Volga River]] || {{RUS}} || 1958 || 31.5 || <ref name=Chao /> |- | 40 ||[[Sayano-Shushenskoye Reservoir]] ([[:ru:Саяно-Шушенское водохранилище|ru]]) ||[[Sayano-Shushenskaya Dam]]||[[Yenisei River]] || {{RUS}} || 1990 || 31.3 || <ref name=Chao /> |- | 41 ||[[Lake Sakakawea]]||[[Garrison Dam]]||[[Missouri River]] || {{USA}} || 1953 || 30.22 || <ref name=Chao /> |- | 42 ||[[Lake Kossou]]||[[Kossou Dam]]||[[Bandama River]] || {{CIV}} || 1961 || 30 || <ref name=Chao /> |- | 43 || ||[[Iroquois Dam]]||[[St. Lawrence River]] || {{CAN}} || 1958 || 29.96 || <ref name=Chao /> |- | 44 ||[[Lake Oahe]]||[[Oahe Dam]]||[[Missouri River]] || {{USA}} || 1966 || 29.11 || <ref name=Chao /> |- | 45 ||[[Lake Itaipu]] ([[:pt:Lago de Itaipu|pt]]) ||[[Itaipu Dam]]||[[Paraná River]] || {{BRA}} and {{PRY}} || 1983 || 29 || <ref name=Chao>{{cite journal| title=Impact of Artificial Reservoir Water Impoundment on Global Sea Level |author1=B. F. Chao |author2=Y. H. Wu |author3=Y. S. Li | journal=Science | volume=320 | issue=5 | pages=212–214 | doi=10.1126/science.1154580 | year=2008| pmid=18339903|bibcode=2008Sci...320..212C |citeseerx=10.1.1.394.2090 |s2cid=43767440 }} Compiles a database of world dams using the [[International Commission on Large Dams]] database.</ref> |- | 46 ||[[Rybinsk Reservoir]]||[[Rybinsk Hydroelectric Station|Rybinsk Dam]]||[[Volga River]] || {{RUS}} || 1941-1947 || 25.4 || |- | 47 ||[[Fort Peck Lake]]||[[Fort Peck Dam]]||[[Missouri River]] || {{USA}} || 1930 || 23.1 || |- | 47 ||[[La-Grande 4 Reservoir]]||[[La Grande-4 generating station]]||[[La Grande River]] || {{CAN}} || 1984 || 19.5 || |- | 48 ||[[Kakhovka Reservoir]]||[[Kakhovka Hydroelectric Power Plant|Kakhovka Dam]]||[[Dnieper River]] || {{UKR}} || 1956 || 0 (Previously 18.2) || |- | 49 ||[[Sanmenxia Reservoir]]||[[Sanmenxia Dam]]||[[Yellow River]] || {{PRC}} || 1962 || 16.2 || <ref name=Chao /><ref name=Avakyan /> |- | 50 ||[[Mingachevir reservoir]]||[[Mingachevir Dam]]||[[Kura (Caspian Sea)|Kura River]] || {{AZE}} || 1953 || 15.73 || |- | 51 ||Merowe Reservoir||[[Merowe Dam]]||[[Nile River]] || {{SUD}} || 2009 || 12.50 || <ref name=structure>{{cite web | url=http://www.merowedam.gov.sd/en/structure.html | title=Merowe Dam: Structure | access-date=2017-03-03 | archive-date=2017-03-06 | archive-url=https://web.archive.org/web/20170306175208/http://www.merowedam.gov.sd/en/structure.html | url-status=dead }}</ref> |} == See also == *[[List of reservoirs by surface area]] *[[List of conventional hydroelectric power stations]] *[[List of largest reservoirs in the United States]] ==References== {{Reflist}} {{DEFAULTSORT:Reservoirs By Volume, List Of}} [[Category:Reservoirs|*]] [[Category:Lists of buildings and structures]] [[Category:Lists of bodies of water]] [[Category:Volume|Reservoirs]]'
New page wikitext, after the edit (new_wikitext)
'{{Short description|none}} The classification of a [[reservoir]] by volume is not as straightforward as it may seem. As the name implies, water is held in reserve by a reservoir so it can serve a purpose. For example, in [[Thailand]], reservoirs tend to store water from the wet season to prevent flooding, then release it during the dry season for farmers to grow rice. For this type of reservoir, almost the entire volume of the reservoir functions for the purpose it was built. [[Hydroelectricity|Hydroelectric power generation]], on the other hand, requires many dams to build up a large volume before operation can begin. For this type of reservoir only a small portion of the water held behind the dam is useful. Therefore, knowing the purpose for which a reservoir has been constructed, and knowing how much water can be used for that purpose, helps determine how much water is in possible reserve. ==Terminology== The following terms are used in connection with the volume of reservoirs: {{glossary}} {{term |1=Nominal volume}} {{term |1=Capacity |multi=y}} {{defn |1=The total volume of all water held behind a dam at the maximum level possible.}} {{term |1=Initial volume}} {{term |1=Design volume |multi=y}} {{defn |1=The possible volume within the reservoir after it first opens. Many rivers are high in silt that over time deposits behind a dam reducing capacity.}} {{term |1=Active volume}} {{term |1=Live volume |multi=y}} {{defn |1=The total capacity minus the dead pool volume. This is the volume that can serve some downstream purpose. For example, it is the volume available to make hydroelectric power or provide drinking water to a city.}} {{term |1=Dead pool volume}} {{term |1=Minimum volume |multi=y}} {{defn |1=The amount of water left in a reservoir that cannot be used for the general purpose the reservoir was constructed. At this state, the reservoir is termed ''fully drawn down.'' For example, if built to supply water in the dry season, it is the water left behind when no more water can be extracted. Frequently, the effective minimum volume is greater if the water is needed for a purpose behind a dam.}} {{term |1=Available capacity}} {{defn |1=May require knowing the reservoir's primary purpose. If it is designed to prevent flooding, it may be the volume of water that can be retained before reaching maximum or ''top water''.}} {{term |1=Actual}} {{term |1=Current |multi=y}} {{defn |1=When coupled with another term, reflects the fact the level behind the dam is not constant.}} {{glossary end}} ==Expanded versus artificial lakes== The list below largely ignores many natural lakes that have been augmented with the addition of a relatively minor dam. For example, a small dam, two hydroelectric plants, and locks on the outlet of [[Lake Superior]] make it possible to artificially control the lake level. Certainly, the great majority of the lake is natural. However, the control of water that can be held in reserve means a portion of the vast lake functions as a reservoir. Recognition of lakes like Lake Superior greatly changes the list below. For example, the Francis H. Clergue Generating Station and [[Saint Marys Falls Hydropower Plant]], which are both on the lake's outlet, operate with just 5.9 meters total head. This is short compared to other dams. However, when viewed against the 81,200 km2 area of the lake, even a small range in Lake Superior's water level means its ''active'' volume is greater than the largest ''nominal'' in the table below. ==List== {| class="wikitable sortable" ! width="4%" | Rank ! width="18%" | Reservoir ! width="18%" | Dam ! width="18%" | River ! width="18%" | Country ! width="9%" | Year ! scope="col" class="text-align:right;" width="9%" | Nominal volume km³ ! width="10%" class="unsortable" | {{Tooltip|Ref.|Reference(s)}} |- | 1 ||[[Lake Kariba]]||[[Kariba Dam]]||[[Zambezi River]] || {{ZAM}} and {{ZIM}} || 1959 || 180.6 ||,<ref name=Chao /> 160.3<ref name=Avakyan /> |- | 2 ||[[Bratsk Reservoir]]||[[Bratsk Dam]]||[[Angara River]] || {{RUS}} || 1964 || 169 ||,<ref name=Chao /> 169.3<ref name=Avakyan /> |- | 3 ||[[Lake Volta]]||[[Akosombo Dam]]||[[Volta River]] || {{GHA}} || 1965 || 150 ||,<ref name=Chao /> 148<ref name=Avakyan /> |- | 4 ||[[Manicouagan Reservoir]]||[[Daniel-Johnson Dam]]||[[Manicouagan River]] || {{CAN}} || 1968 || 141.85 ||,<ref name=Chao /> 141.7<ref name=Avakyan /> |- | 5 || [[Guri Reservoir]]||[[Guri Dam]]||[[Caroní River]] || {{VEN}} || 1986 || 135 || <ref name=Chao /> |- | 6 ||[[Lake Nasser]]||[[Aswan High Dam]]||[[Nile River]] || {{EGY}} and {{SUD}} || 1971 || 132 || <ref>{{Cite web|url=http://www.water-technology.net/projects/aswan-high-dam-nile-sudan-egypt/|title = Aswan High Dam, River Nile, Sudan, Egypt - Water Technology}}</ref> |- | 7 ||Millennium Reservoir||[[Grand Ethiopian Renaissance Dam]]||[[Blue Nile River]] || {{ETH}} || under construction || 79 || <ref name="salinides">{{cite web|title=Grand Ethiopian Renaissance Dam Project|url=http://www.salini-impregilo.com/lavori/in-corso/dighe-impianti-idroelettrici/grand-ethiopian-renaissance-dam-project.html|publisher=Salini|accessdate=17 January 2014}}</ref> |- | 8 ||[[Williston Lake]]||[[W. A. C. Bennett Dam]]||[[Peace River (Canada)|Peace River]] || {{CAN}} || 1967 || 74.3 || <ref name=Chao /> |- | 9 ||[[Krasnoyarsk Reservoir]] ||[[Krasnoyarsk Dam]]||[[Yenisei River]] || {{RUS}} || 1967 || 73.3 || <ref name=Chao /><ref name=Avakyan /> |- | 10 ||[[Zeya Reservoir]]||[[Zeya Hydroelectric Station]] ([[:ru:Зейская ГЭС|ru]]) ||[[Zeya River]] || {{RUS}} || 1978 || 68.4 || <ref name=Chao /><ref name=Avakyan /> |- | 11 ||[[Robert-Bourassa Reservoir]]||[[Robert-Bourassa generating station]]|| La Grande River || {{CAN}} || 1981 || 61.71 || <ref name=Chao /> |- | 12 || La Grande-3 Nord Reservoir ||[[La Grande-3 generating station]]||[[La Grande River]] || {{CAN}} || 1981 || 60.02 || <ref name=Chao /> |- | 13 ||[[Ust-Ilimsk Reservoir]]||[[Ust-Ilimsk Dam]]||[[Angara River]] || {{RUS}} || 1977 || 59.3 || <ref name=Chao /><ref name=Avakyan /> |- | 14 ||[[Boguchany Reservoir]]||[[Boguchany Dam]]||[[Angara River]] || {{RUS}} || 2012 || 58.2 || <ref name=Chao /> |- | 15 ||[[Kuybyshev Reservoir]]||[[Zhiguli Hydroelectric Station]]||[[Volga River]] || {{RUS}} || 1955 || 58 || <ref name=Chao /><ref name=Avakyan>{{cite journal|vauthors=Avakyan AB, Ovchinnikova SP |name-list-style=amp |title=Foreign experience and techniques | journal=Hydrotechnical Construction | volume=5 | issue = 8 | pages = 773–777 | year=1971 | doi=10.1007/BF02403626|s2cid=110352316 }}</ref> |- | 16 ||[[Cahora Bassa]]||[[Cahora Bassa Dam]]||[[Zambezi River]] || {{MOZ}} || 1974 || 55.8 || <ref name=Chao /> |- | 17 ||[[Serra da Mesa Reservoir]]||[[Serra da Mesa Dam]]||[[Tocantins River]] || {{BRA}} || 1998 || 54.4 || <ref name="efur">{{cite web|title=Hydroelectric Power DA SERRA MESA (1.275MW)|url=http://www.furnas.com.br/hotsites/sistemafurnas/usina_hidr_serramesa.asp|publisher=[[Eletrobras Furnas]]|accessdate=18 September 2010|language=Portuguese|archive-url=https://web.archive.org/web/20180317035716/http://www.furnas.com.br/hotsites/sistemafurnas/usina_hidr_serramesa.asp|archive-date=17 March 2018|url-status=dead}}</ref> |- | 18 ||[[Caniapiscau Reservoir]]||[[Brisay generating station]]||[[Caniapiscau River]] || {{CAN}} || 1981 || 53.8 || <ref name=Chao /> |- | 19 || ||[[Pati Dam|Pati]]–[[Chapetón Dam|Chapetón]](proposal) ||[[Paraná River]] || {{ARG}} || ? || 53.7 || <ref name=Chao /> |- | 20 ||[[Bukhtarma Reservoir]] ||[[Bukhtarma Hydroelectric Power Plant]]||[[Irtysh River]] || {{KAZ}} || 1967 || 53 || <ref name=Chao /><ref name=Avakyan /> |- | 21 ||[[Danjiangkou Reservoir]]||[[Danjiangkou Dam]]||Han River (Yangtze River tributary)|| {{PRC}} || 1962 || 51.6 || <ref name=Chao /> |- | 22 ||[[Atatürk Reservoir]]||[[Atatürk Dam]]||[[Euphrates]] || {{TUR}} || 1992 || 48.7 || <ref name=Chao /> |- | 23 ||[[Irkutsk Reservoir]]||[[Irkutsk Dam]]||[[Angara River]] || {{RUS}} || 1956 || 46 || <ref name=Chao /> |- | 24 ||[[Lago Tucuruí]]||[[Tucuruí Dam]]||[[Tocantins River]] || {{BRA}} || 1984 || 45.54 || <ref name=Chao /> |- | 30 ||[[Roseires Reservoir]]||[[Roseires Dam]]||[[Blue Nile]] || {{SUD}} || 1966 || 36.3 || <ref name=Chao /> |- | 31 ||[[Vilyuy Reservoir]] ([[:ru:Вилюйское водохранилище|ru]]) ||[[Vilyuy Dam]] ([[:ru:Вилюйская ГЭС|ru]]) ||[[Vilyuy River]] || {{RUS}} || 1967 || 35.9 || <ref name=Chao /> |- | 32 ||[[Lake Powell]]||[[Glen Canyon Dam]]||[[Colorado River]] || {{USA}} || 1964 || 35.55 || <ref name=Chao /> |- |33 ||[[Lake Argyle]]||[[Lake Argyle Dam]]||[[Ord River]]|| {{AUS}} || 1971 || 35 || <ref>Harrison, Rod; Ernie James; Chris Sully; Bill Classon; Joy Eckermann (2008). Queensland Dams. Bayswater, Victoria: Australian Fishing Network. pp. 60–61. ISBN 978-1-86513-134-4.</ref><ref> Kay, B. (2006). Water Resources: Health, Environment and Development. CRC Press. p. 108. ISBN 9780203027851. Retrieved 2014-12-13.</ref> |- | 34 ||[[Nechako Reservoir]]||[[Kenney Dam]]||[[Nechako River|Nechako]]–[[Kemano River|Kemano]] || {{CAN}} || 1966 || 35 || <ref name=Chao /> |- | 35 ||[[Sobradinho Reservoir]]||[[Sobradinho Dam]]||[[São Francisco River]] || {{BRA}} || 1979 || 34.1 || <ref name=Chao /> |- | 36 ||[[Smallwood Reservoir]]||[[Churchill Falls Generating Station|Churchill Falls]]||[[Churchill River (Atlantic)|Churchill River]] || {{CAN}} || 1971 || 32.64 || <ref name=Chao /> |- | 37 || ||[[Nelson River Hydroelectric Project|Jenpeg Dam]]||[[Lake Winnipeg]] outlet || {{CAN}} || 1975 || 31.79 || <ref name=Chao /> |- | 38 ||[[Keban Dam Lake]]||[[Keban Dam]]||[[Euphrates]] || {{TUR}} || 1971 || 31.5 || <ref name=Chao /> |- | 39 ||[[Volgograd Reservoir]]||[[Volga Hydroelectric Station]]||[[Volga River]] || {{RUS}} || 1958 || 31.5 || <ref name=Chao /> |- | 40 ||[[Sayano-Shushenskoye Reservoir]] ([[:ru:Саяно-Шушенское водохранилище|ru]]) ||[[Sayano-Shushenskaya Dam]]||[[Yenisei River]] || {{RUS}} || 1990 || 31.3 || <ref name=Chao /> |- | 41 ||[[Lake Sakakawea]]||[[Garrison Dam]]||[[Missouri River]] || {{USA}} || 1953 || 30.22 || <ref name=Chao /> |- | 42 ||[[Lake Kossou]]||[[Kossou Dam]]||[[Bandama River]] || {{CIV}} || 1961 || 30 || <ref name=Chao /> |- | 43 || ||[[Iroquois Dam]]||[[St. Lawrence River]] || {{CAN}} || 1958 || 29.96 || <ref name=Chao /> |- | 44 ||[[Lake Oahe]]||[[Oahe Dam]]||[[Missouri River]] || {{USA}} || 1966 || 29.11 || <ref name=Chao /> |- | 45 ||[[Lake Itaipu]] ([[:pt:Lago de Itaipu|pt]]) ||[[Itaipu Dam]]||[[Paraná River]] || {{BRA}} and {{PRY}} || 1983 || 29 || <ref name=Chao>{{cite journal| title=Impact of Artificial Reservoir Water Impoundment on Global Sea Level |author1=B. F. Chao |author2=Y. H. Wu |author3=Y. S. Li | journal=Science | volume=320 | issue=5 | pages=212–214 | doi=10.1126/science.1154580 | year=2008| pmid=18339903|bibcode=2008Sci...320..212C |citeseerx=10.1.1.394.2090 |s2cid=43767440 }} Compiles a database of world dams using the [[International Commission on Large Dams]] database.</ref> |- | 46 ||[[Rybinsk Reservoir]]||[[Rybinsk Hydroelectric Station|Rybinsk Dam]]||[[Volga River]] || {{RUS}} || 1941-1947 || 25.4 || |- | 47 ||[[Fort Peck Lake]]||[[Fort Peck Dam]]||[[Missouri River]] || {{USA}} || 1930 || 23.1 || |- | 47 ||[[La-Grande 4 Reservoir]]||[[La Grande-4 generating station]]||[[La Grande River]] || {{CAN}} || 1984 || 19.5 || |- | 48 ||[[Kakhovka Reservoir]]||[[Kakhovka Hydroelectric Power Plant|Kakhovka Dam]]||[[Dnieper River]] || {{UKR}} || 1956 || 0 (Previously 18.2) || |- | 49 ||[[Sanmenxia Reservoir]]||[[Sanmenxia Dam]]||[[Yellow River]] || {{PRC}} || 1962 || 16.2 || <ref name=Chao /><ref name=Avakyan /> |- | 50 ||[[Mingachevir reservoir]]||[[Mingachevir Dam]]||[[Kura (Caspian Sea)|Kura River]] || {{AZE}} || 1953 || 15.73 || |- | 51 ||Merowe Reservoir||[[Merowe Dam]]||[[Nile River]] || {{SUD}} || 2009 || 12.50 || <ref name=structure>{{cite web | url=http://www.merowedam.gov.sd/en/structure.html | title=Merowe Dam: Structure | access-date=2017-03-03 | archive-date=2017-03-06 | archive-url=https://web.archive.org/web/20170306175208/http://www.merowedam.gov.sd/en/structure.html | url-status=dead }}</ref> |} == See also == *[[List of reservoirs by surface area]] *[[List of conventional hydroelectric power stations]] *[[List of largest reservoirs in the United States]] ==References== {{Reflist}} {{DEFAULTSORT:Reservoirs By Volume, List Of}} [[Category:Reservoirs|*]] [[Category:Lists of buildings and structures]] [[Category:Lists of bodies of water]] [[Category:Volume|Reservoirs]]'
Unified diff of changes made by edit (edit_diff)
'@@ -90,14 +90,4 @@ |- | 24 ||[[Lago Tucuruí]]||[[Tucuruí Dam]]||[[Tocantins River]] || {{BRA}} || 1984 || 45.54 || <ref name=Chao /> -|- -| 25 || Los Barreales Lake?{{Verify source|date=November 2010}}|| Loma de la Lata Dam? ([[Cerros Colorados Complex]]){{Verify source|date=November 2010}}||[[Neuquén River]] || {{ARG}} || 1973 || 43.5 || <ref name=Chao /> -|- -| 26 || Mari Menuco Lake?{{Verify source|date=November 2010}}|| Planicie Banderita hydroelectric power plant ([[Cerros Colorados Complex]]) ||[[Neuquén River]] || {{ARG}} || 1979 || 43 || <ref name=Chao /> -|- -| 27 ||[[Three Gorges Reservoir]]||[[Three Gorges Dam]]||[[Yangtze River]] || {{PRC}} || 2009 || 39.3 || <ref name=Chao /> -|- -| 28 ||[[Lake Mead]]||[[Hoover Dam]]||[[Colorado River]] || {{USA}} || 1936 || 37.3 || <ref name=Chao /> -|- -| 29 || ||[[Winar Grue]]?{{Verify source|date=November 2010}}|| || {{CAN}} || 1952 || 37 || <ref name=Chao /> |- | 30 ||[[Roseires Reservoir]]||[[Roseires Dam]]||[[Blue Nile]] || {{SUD}} || 1966 || 36.3 || <ref name=Chao /> '
New page size (new_size)
12630
Old page size (old_size)
13414
Size change in edit (edit_delta)
-784
Lines added in edit (added_lines)
[]
Lines removed in edit (removed_lines)
[ 0 => '|-', 1 => '| 25 || Los Barreales Lake?{{Verify source|date=November 2010}}|| Loma de la Lata Dam? ([[Cerros Colorados Complex]]){{Verify source|date=November 2010}}||[[Neuquén River]] || {{ARG}} || 1973 || 43.5 || <ref name=Chao />', 2 => '|-', 3 => '| 26 || Mari Menuco Lake?{{Verify source|date=November 2010}}|| Planicie Banderita hydroelectric power plant ([[Cerros Colorados Complex]]) ||[[Neuquén River]] || {{ARG}} || 1979 || 43 || <ref name=Chao />', 4 => '|-', 5 => '| 27 ||[[Three Gorges Reservoir]]||[[Three Gorges Dam]]||[[Yangtze River]] || {{PRC}} || 2009 || 39.3 || <ref name=Chao />', 6 => '|-', 7 => '| 28 ||[[Lake Mead]]||[[Hoover Dam]]||[[Colorado River]] || {{USA}} || 1936 || 37.3 || <ref name=Chao />', 8 => '|-', 9 => '| 29 || ||[[Winar Grue]]?{{Verify source|date=November 2010}}|| || {{CAN}} || 1952 || 37 || <ref name=Chao />' ]
Whether or not the change was made through a Tor exit node (tor_exit_node)
false
Unix timestamp of change (timestamp)
'1709549389'